HITACHI
 Inspire the Next

Variable Frequency Drives

Intuitively innovative!

At the point where ease of use meets high performance

(0) Hitachi Industrial Equipment Systems Co., Ltd.

SJ series P1, setting the new global standard

Easy access to all the functionality

The intuitive color TFT operator and Various convenient features.

A High Performance drive for the most demanding of applications

A variety of motors (IM/PM) can be adjustable to drive. The most stable operation ever.

Versatility through multi mode operation, to meet your specific application needs

SJ-P1 meet a wide range of needs by achieving variety of functions necessary for drive systems.

Corresponds to variety of applications.

Fan
P. 11

Pump P. 11

Crane P. 13

P. 7

Injection molding

CONTENTS

Features
P.3-18

Model
configuration

Standard Specifications	P. 20
Common specifications	P. 21
Protective Functions	P. 22
Dimensions	P.23-25
Terminals	P. 26
Connecting Diagram	P. 29
$\begin{aligned} & \text { Connecting to } \\ & \text { PLC } \end{aligned}$	P. 30
Function List	P.31-44
Wiring and Accessories	P. 45
Option cassette	P. 46
Torque Charactoristic	P. 47
Compatibility Between	
SJ700series and SJ Series Pl	P. 48
For Correct	P.49-50

Corresponding to the global standard.
Input voltage is Max.AC500 Voltage. (400V class)

JQA-1153 JQA-EM6974

Hitachi Industrial Equipment Systems Co., Ltd. NARASHINO division is certified for ISO 14001 (standard of environmental management system) and ISO 9001 (standard of quality assurance management system).

Machine
Tools

Intuitive, easy-to-use LCD operator is standard

Easily monitor, set, or review operational data and parameters.

Operation Panel Description

MONITOR SCREEN
Displays Parameters and data.

F1 KEY
Transition to home, cancel, etc.
POWER LED KEY
Save data, etc.
User defined function of the key
is indicated at the bottom
right of the screen.

powered-on.
RUN KEY the panel is
Motor starts rotation
when this Key is active.

Features of the operation panel

"Visualization Icon" Easy to understand the inverter status

RUN, STOP, TRIP,OVERLOAD, FAN LIFE NOTICE and other is very obvious. For this Icon, error diagnosis is also easy.

Background color can be selected Selectable from Blue / Green / Black. Easy visualization can be achieved in every cases!

Example of "Operation visualization Icon"

RUN FW	The motor is in forward running.	LIM	Output frequency is limited by such as overload.		
RUN					
RV				The motor is in reverse running. \quad ALT	The inverter is in overload notice or
:---					
thermal notice.					
TRe	board notice state.				

"Setting visualization icon"
Some of the setting is easy to understand.

Large character display

Great visibility thanks
to the large character display.

Assist bar

Show function of F1, F2, and RUN key to assist user operation. Also clock information can be shown in this area.

Real-time at the alarm occurrence is recorded.

Alarm record available based on Real-time-clock.
Date and time can be set in the operator by placing battery. Speedy fault diagnosis and root cause investigation will be possible, since alarm is record on actual time.
(Note:Battery is prepared by user.)

Multiple languages.

The display of 7 languages (Japanese, English, French, Spanish, Turkish, Polish, Czech) is available as standard.
(Note: Firmware version of the operation panel (VOP) that can display 7 languages is 2.01 or later (Previous versions is available only in Japanese and English. VOP version can be confirmed with the nameplate seal on the back of the operation panel.)

Example of main screen transition and parameter setting
Check at once!

\author{

Monitor while
setting!

Verify View
}
Easy to see!
Clear View

Quick trouble shoot!
 Error View

Multi-monitor (3lines)

Reference screen

Large monitor screen unit!

Trip history screen

Trip information details

Other features!

- Parameter data can be saved in the memory of the operation panel!
Data can be kept safe even if the inverter fails.
- Operation panel can be also used as copy
- If the battery is used, the real-time data is retained even when the power is cut off of the inverter.
- Operation panel can be remotely connected via option cable ICS-1 or ICS-3.
(Note) While the power is supplied, please do not remove the operation panel!

OTrip monitor

- Display of
former models
- Inverter state is easy to understand when an error has occurred.

TRIP NRDY ${ }^{\text {ancII }}$ Hil	Shown the
Dcaurime trio	inverter is in trip condition.
Inder-tloltage	Shows the cause of trip.
dms 16.0.23 11.	-Displays trip event information:
	Output frequency at trip point/Motor
	current at trip point/
Stetus	DC bus voltage at trip point/Cumulative
Let 4 In 110	inverter operation/

Status 1 to 5 indicates the inverter state at the time of the trip occurs.
(Note)Please refer to the user guide for more information
(Note)These display is a state of the moment of error occurrence, the actual motor behavior might be different.

Easy access to all the functionality

Various convenient features.

Direct field replacement, when needed

Panel mounting portion is supplied as separate part. (5.5 kW or more)
Even if its body size is different, it is possible to correspond in flexible ways.

Screw type terminal block is also abailable.

-Optional screw type terminal block is available by removing the standard termina block.
Note: Removable terminal blocks of SJ300/L 300P/SJ700/L700 can not be mounted on SJ-P1
-Data conversion can be made via PC setting software
(ProDriveNext). (Is in developing)

Cooling fan and the main circuit capacitor is designed for 10 years life.
(Note: The ambient temperature is $40^{\circ} \mathrm{C}$ (annual average).
Without corrosive gas, flammable gas, oil mist and dust.)
The above design life is a calculated value, not a guaranteed value.
Output current at the calculation is 80% of the rated current of the inverter.)

Monitor lifetime prediction functions.

Electrolytic capacitor of control circuit
(internal estimation calculation).
Cooling fan.

Easy data copy to multiple inverters.

Operation panel is removable and memory is built in.
Parameter data and EzSQ programing data can be copied to multiple inverters, which allows users to replace inverter in a short working time.

[^0]
Control circuit terminal designed for easy wiring

Easy to use screw less terminal block for control terminal block.

Rod terminal achieved easy wiring.

Modbus communication is standard. 2 communication terminals provided for Modbus communication as standard.

Daisy chain wiring of RS-485 is easy.

$0 / 10 \mathrm{~V}$ and 4 to 20 mA inputs and as well as output are easily selected via DIP switch.

- 2 analog inputs (3inputs in total). - 2 analog outputs.

Programming ease through the use of 24 Version

 VDC to power up inverter CPU memoryNormal power supply (RO, TO) to CPU. Also possible to utilize an external 24VDC control power supply.

Parameter setting is also possible with the main power is turned off. Thus saving time and effort. Possible use of logic standby power will also contribute to energy conservation. Connecting to the PLC and Setting via PC configuration software are also available.

Quick diagnose during failure UP

The SJ-P1 automatically stores internal data in retentive memory*.
Users can upload the data to a PC for review and diagnosis of issue.

Control Simulation Logic operation without direct motor output

The simulation mode makes it easier to verify connection with the system control equipment.

In the simulation mode, only the motor output is shut off while all inverter functions are enabled. Full simulation allows to generate an alarm by setting the virtual output conditions, such as current etc. utilizing parameter and the analog inputs. Hence, it is possible to confirm the operation of the control equipment without a motor. The simulation mode can also be active by using an external 24VDC power supply.

Easy customize by PC configuration software

 EzSaPC setting software.
Using the PC configuration software (ProDriveNext), parameter setting, monitor, and diagnosis can be easily achieved.

Easy customizationto your own inverter. \quad P.17-18
Specific behavior can be easily programmed into the inverter by BASIC like program.

A High Performance drive for the most demanding of applications

Performance

"Smooth operation" in critical and demanding applications, such as vertical lift

High starting torque at low speed range while in control of heavy loads. (ND rating). [Sensor less vector control(SLV)]
[OHz sensor less vector control]

(*Sensorless vector control with ND Rating)
Cog-less motor operation for crane, lift, transport, etc.
Trip-less operation for better productivity.

Refer to the Parameter AA121/HA-01 to / Hb102 to

Save on spare control costs

Our multi-mode inverter can control both your induction motor, or permanent magnet AC motor.
All while offering programmable current limit to protect from demagnetization of the PM motor.

Decreasing overshoot and undershoot contributes to smooth and stabilized operation with reduced load shock. [Gain mapping Function]

For long time operation (fan, pumps)

Significant energy savings can be obtained in comparison to an induction motor, even in 24 hours 365 days operation.

"High speed rotation" for non-traditional applications

590 Hz at the maximum operation is available for precise metal processing. For PM motor, also up to 400 Hz . (actual output frequency depends on motor)

For metal tooling

High speed rotation contributes the high quality of metal processing.

Automatic speed adjustment manages ideal acceleration / deceleration speed to reduce the trip possibility from over current, over voltage, and impact load.

Over magnetize function

OFF

Over-current suppress function

[^1]
Versatility through multi mode operation, to meet your specific application needs.

SJ-P1 meet a wide range of needs by achieving variety of functions

Certified "functional safety" international standard

UP

Certified functional safety.

(Certification in process)
Third party certified electrical safety,
In compliance to IEC61508, IEC/EN61800-5-2 SIL3 STO, available as standard.

STO (Safe torque off)

SS1, SLS and others are available with slot-in option cassette. (In design phase)

"Save space and save cost" by multi rating function!

Triple-rated for Induction motor for various applications is selectable. Dual-rated for PM motor control. Multiple rating helps to save space and cost.

Rating	VLD(Very Light Load)	LD(Light Load)	ND(Normal Load)
Induction motor			
$\underset{\text { mior }}{\text { mid }}$ PM motor			
Applications	Fan-Pump		
		Metal tooling ${ }^{\text {Conveyer }}$	
			Crane-Mixer
Overload current rating	110% 60sec, 120\% 3sec	120\% 60sec, 150% 3sec	150\% 60sec, 200\% 3sec
Example 400V/18.5kW Max rated output current	$47.0 \mathrm{~A}$	$43.0 \mathrm{~A}$	$39.0 \mathrm{~A}$

Easy customize with "Slot-in" option cassette

Cassette type option boards for intuitive installation.
Visible indicators on the various option boards allow for user to verify functionality with ease.
Tasks such as setting a station number is simplified by use of a rotary selection switch.
Replacement is also simplified by the cassette design. Replacement after failure is also easy.

Options List.
Ethernet
EtherCAT
PROFIBUS-DP
PROFINET *
Feedback
Safety $*$
Analog input and output *
*Contact Sales Office for availability

Network options available for system expansion.

- Option commuication and standard Modbus-RTU can be used together.

-Following fieldbus network available with option on slot
(PROFIBUS-DP, PROFINET, EtherCAT, Ethernet)
(Modbus is a registered trademark of Modicon Inc. EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckoff Automation GmbH, Germany. Other company names and product names mentioned are the property of the respective trademarks or registered trademarks.)

"High quality" to comply international standards

Corresponds to the EC directive, UL and cUL in order to guarantee the quality and safety. Equipped with a quality that is recognized in Europe.

EC directive	LVD	: IEC61800-5-1
	EMC directive $:$ IEC61800-3	

Built-in noise filters corresponding to the European EMC Directive. (IEC61800-3 2nd Environment Category C3)

Since complies with the RoHS, Environmental considerations also sufficient.

Braking circuit is built-in. Further "Space and Cost saving"
The regenerative braking circuit is built-in, therefore a separate regenerative braking unit (BRD) is not necessary. Saving space and cost.
$\left[\begin{array}{c}\text { Applicable models } \\ 200 \mathrm{~V} \text { class } 0.4 \text { to } 22 \mathrm{~kW} \\ 400 \mathrm{~V} \text { class } 0.75 \text { to } 55 \mathrm{~kW} \\ (400 \mathrm{~V} \text { class } 45 \mathrm{~kW} \text { and } 55 \mathrm{~kW} \\ \text { is the order) }\end{array}\right.$

Regenerative braking unit(BRD) Unnecessary

Application Note

Expand energy savings in applications

The SJ-P1 inverter is applicable in a wide variety of applications. Introducing

Fan \& Pump

PM
motor

【Energy saving by the inverter】

Optimize for energy savings in pumping applications.

By utilizing the SJ-P1 inverter control versus the valve control, significant energy saving can be obtained over the various flow rates.

\square Examples of energy-saving effect

[Further energy saving by the PM motor]
Corresponds to both Induction motor and PM motor.

By using a PM motor, further energy savings can be realized.(Please refer to the motor efficiency graph of right)

Obtain the high performance from your PM motor by using our simple adjustment.

By PM motor auto-tuning function, the characteristics of the motor will be optimized for best performance.
\square Efficiency comparison of the induction motor and the PM motor

Hitachi induction motor and PM motor

Premium efficiency motor (IE3)

■Permanent magnet motor

> PM motor drive Multiple rating Modbus communication PID control PID Sleep mode PID Soft-start function Refer to the next page Automatic energy-saving function

more useful features of each application!

New

application
features!
Fan \& Pump

Optimal PID functions for Fan \& Pump applications

At the time of the PID function start-up, the SJ-P1 will reduce the output to eliminate water hammer effect on the system.

Refer to the Parameter
AH-75 to

Execute a stop command of the operation when it is unnecessary, saving energy and wear on motor and pump system.

Refer to the Parameter AH-85 to

Hydraulic pump
EZSQ

Energy-saving achieved by EzSQ (programming function).

By increasing the rotation speed when pressure is necessary, and reducing the rotational speed during standby, the SJ-P1 will optimize energy consumption. In addition, EzSQ can utilize signals from external sources such as a pressure sensor and/or a relay circuit. Therefore, cost reduction and space saving can be achieved.

\square Example of the results of the hydraulic pump energy-saving test

High Performance Applications

Crane, Lift, Automatic warehouse Ezsa

Provides smooth drive control even for heavy weights.
Provide stable drive control even for the heavy weights (such as winding of the cranes) by high start-up torque ($0.3 \mathrm{~Hz}, 200 \%$).
*Note Hitachi Induction motor 4P (ND load/Sensor-less vector control)
Reduce the shock such as swing load by multi setting speed response gain.

Gain mapping function provides a vibration reduction and stable operation.
It will be also effective in the tact time reduction.
Space-saving and cost-down by the EzSQ(programming function). By using EzSQ, it is possible to reduce components by eliminating the host controller for the drive, thus saving-space and cost.

Recommended function

Sensorless vector control Gain mapping function EzSQ(programming function)

Injection molding machine

Torque control can be applied to the injection molding machine.

"Overload warning signal" and "Over torque signal" can apply the operation timing of the injection and mold clamping axis.

Recommended function

> Torque control Torque limit function Overload signal Over torque signal Overload restriction function
of its high efficiency and high quality.

Winder

Utilizing Gain Control.

When you allow the speed response gain to be variable by the output frequency band, the drive is more stable.
This is suitable for winder and re-winder applications.
In Winding machine applications highly precise rotation is required.

For closed-Loop application optional feedback board is required.

Recommended function

Grinder

Miniaturization by utilizing a PM motor.

Hitachi supports PM motor control.

Further support to high-quality machining applications.

Maximum output frequency is 590 Hz (induction motor) and 400 Hz (PM motor).
EzSQ expands the possibility for a wide variety of simpler applications.
By utilizing the EzSQ program operation functionality, The drive logic (EzSQ) can be developed and edited to optimize the motor operation based on conditional or logical programming to enhance and increase production.
In addition, the programming functionality can reduce cost, function, and panel space as well as some of the logic allocated to the controller and peripheral devices.
e. g. Depend on application desired operation, the logic program (EzSQ) can control many of the of operational parameters, such as frequency, overload level, overload signals and others.

EzSQ

PM motor

Hitachi's ProDriveNext Software

Easy configuration, such as start/stop and fault diagnosis.

ProDriveNext(PC setting software)

ProDriveNext supports various functions.

Monitor Function.

All display parameters can be monitored.

Monitor display format can be uniquely customized by selecting the required items, and can be displayed in a tabular or graphical format.

Device Name: SJ-P1

| No. | Data ID | Data Name |
| :--- | :--- | :--- | :--- |
| 1 | $\mathrm{dA}-01$ | Output frequency monitor |
| 2 | $\mathrm{dA}-02$ | Output current monitor |
| 3 | $\mathrm{dA}-03$ | Rotation direction monitor |
| 4 | $\mathrm{dA}-04$ | Frequency reference monitor(After calcula... |
| 5 | $\mathrm{dA}-06$ | Output frequency scale conversion monitor |
| 6 | $\mathrm{dA}-10$ | Observer speed monitor (at OLV) |
| 7 | $\mathrm{dA}-15$ | Torque reference monitor(After calculation) |
| 8 | $\mathrm{dA}-16$ | Torque limit monitor |
| 9 | $\mathrm{dA}-17$ | Output Torque monitor |
| 10 | $\mathrm{dA}-18$ | Output Voltage monitor |
| 11 | $\mathrm{dA}-28$ | Pulse counter monitor |
| 12 | $\mathrm{dA}-30$ | Input power monitor |
| 13 | $\mathrm{dA}-32$ | Accumulation input power monitor |

Parameter Setting.

Changes made by keyboard input.

Changed parameters highlighted "PINK" which indicates that it needs to be download to the device.

[Parameter setting display】

Extensive parameter comparison function.

Parameter management is supported by comparison functions below.
[Setting value] - [Current value],
[Setting value] - [Default value]
[Setting value] - [File value]

Data Trace function support an failure diagnosis.

By frequency reached, alarm or other signal trigger, the internal data of inverter is stored in real-time in the internal memory*.
Operation adjustment and failure analysis becomes more quickly.
(*This memory data is cleared at power shutdown.)

PC setting Software

Easily Customizable

Hitachi's programming function (EzSQ) and inverter-to-inverter your VFD for each application beyond available fixed parameters.

EzSQ (programming function for customization)

Line	Label	Mnemonic	Parameter 1	Parameter2	Parameter3	Parameter 4	Parameter5	F
7		case	1					
8		call	RUN_FW					
9		case	2					
10		call	RUN_RV					
11		case	3					
12		call	WAT_RUN					
13		case else						
14		call	STOP					
15		end select						
16		goto	LOOP					
17								
18		sub	STOP					
19		UB $\mathrm{w}=$	X w	and	3			
20		if	UBw	<>	2	then	LBLO	
21		FW=	1					
22		timer set	TD(0)	$\mathrm{U}(00)$				
23		$\mathrm{U}(31)=$			1			
24	LBLO	end sub						
25		Λ						
		$]$						
The program is easy to create with available condition branches and timer settings.								

Hitachi's EzSQ makes it possible to achieve a level of control that cannot be realized by a general purpose inverter. Providing a unique solution and added value through cost savings and improved performance.
Simultaneous execution task in SJ-P1 extended to 5tasks/2ms.(SJ700 is 1task/2ms.)

The program is created on a PC setting software (ProDriveNext).
It is easy to programming because similar BASIC!

EzCOM

Inverter-to-Inverter communication

SJ-P1 makes it possible to have Inverter-to-Inverter communication without a PLC or PC. [EzCOM function]

It is easy to build a small coarsely synchronized system using multiple inverters. Since SJ-P1 can use both of EzCOM and external communication option cassette, you can create a system that does not require complicated control components. (The maximum number of EzCOM units is 8 inverters)

Available together, EzCOM communication and field network communication options.

By simple wiring and easy parameter settings, the synchronous operation can be achieved without the host controller (Resulting in cost and wiring savings).

Application case 1

Reduction of the external circuit components.

In a system that would normally require external circuit components such as a relay, timer and switch, it is possible to reduce the use of those external components by using the EzSQ (programming function).

For example the Forward, Reverse, and Stop system shown below are part of the external relay circuit which are no longer required when using EzSQ function.

Application case 2

Advanced operation pattern is reproduced without sensors.
Mixing Machine:
At first mixing the material slowly and then increasing the mixing speed (by monitoring the load current). This speed change can be done automatically when using EzSQ.
Advanced speed patterns can be easily created for each application.

Application case 3

Multiple control is easy.

Winder:

EzCOM is a simple communication function that can be used for winders that would previously required multiple controllers. Construction of multiple systems can be simply achieved by reducing wiring works. Maintenance is also easy.

Application case 4

Check for water leakage without sensors.

Pump control:
Attaching a sensor to various places of the drainage pipe is costly.
EzSQ program that outputs an alarm to calculate the water leakage from the operating status of the pump can be utilized in place of a sensor.

Further examples of EzSQ use

For reducing maintenance cost...
\rightarrow Water leakage detections from pipe, Dust blowouts for fans.
-For additional protective features...
\rightarrow Avoiding water hammers, Multi speed adjustment during mixing process.

OFor example of Water leakage detections from pipe

For further energy savings...
\rightarrow Ideal output controls for fan \& pumps, Sleep modes for conveyers non-regular used
For stand-alone works on multi uses...
\rightarrow Automatic operations of the fan and pumps based on user customization PID

Contact Hitachi

for
more information!

EzSQ function can enable following.

With the combination of these, customized functions can be easily implemented.
Collect information of inverter's internal data such as load current, frequency, and etc.
Onput and output IO (including analogue IOs) can be freely assigned to your own function.
Arithmetic operations (internal calculation), Rewriting inverter parameters, Sequential programming(such as conditions branches), Internal timers, and more other functions..

Model configuration

- SJ series model name indication

Type Name

P1-00175-H F \square F

Motor maximum rated current (at VLD rated current)

00001: 0.1A
to
99999: 9999.9A

F: Integrated EMC filter
Region
E : Europe version U: North America version None:Japan version

F: with keypad
Power Source
L: 3-phase 200V class
H: 3-phase 400 V class

- Lineup

-Available																			
Applicable motor (kW)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132
3-phase 200 V (ND rating)	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-				
3-phase 400 V (ND rating)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

(Note) The applicable motor refers to Hitachi standard 3-phase motor (4-pole).
To use other motors, be sure to prevent the rated motor current (50 Hz) from exceeding the rated output current of the inverter.

Applicable motor capacity by rating

- Overload current rating

VLD (Very light duty): 110\% 60sec, 120\% 3sec
LD (Light duty): $120 \% 60 \mathrm{sec}, 150 \% 3 \mathrm{sec}$
ND (Normal duty): 150\% 60sec, 200% 3sec

- 200 V class

ND Rating Code	Model name	VLD (Very light duty)		LD (Light duty)		ND (Normal duty)	
P1- $\square \square \square-$ LF $\square F$		Motor capacity (kW(HP)) (4pole)	Rated Rurrent (A)	Motor capacity (kW(HP)) (4pole)	Rated current (A)	Motor capacity (kW(HP)) (4pole)	Rated current (A)
004	00044	$0.75(1)$	4.4	$0.75(1)$	3.7	$0.4(1 / 2)$	3.2
007	00080	$1.5(2)$	8.0	$1.5(2)$	6.3	$0.75(1)$	5.0
015	00104	$2.2(3)$	10.4	$2.2(3)$	9.4	$1.5(2)$	8.0
022	00156	$3.7(5)$	15.6	$3.7(5)$	12.0	$2.2(3)$	11.0
037	00228	$5.5(7.5)$	22.8	$5.5(7.5)$	19.6	$3.7(5)$	17.5
055	00330	$7.5(10)$	33	$7.5(10)$	30	$5.5(7.5)$	25
075	00460	$11(15)$	46	$11(15)$	40	$7.5(10)$	32
110	00600	$15(20)$	60	$15(20)$	56	$11(15)$	46
150	00800	$18.5(25)$	80	$18.5(25)$	73	$15(20)$	64
185	00930	$22(30)$	93	$22(30)$	85	$18.5(25)$	76
220	01240	$30(40)$	124	$30(40)$	113	$22(30)$	95
300	01530	$37(50)$	153	$37(50)$	140	$30(40)$	122
370	01850	$45(60)$	185	$45(60)$	169	$37(50)$	146
450	02290	$55(75)$	229	$55(75)$	210	$45(60)$	182
550	02950	$75(100)$	295	$75(100)$	270	$55(75)$	220

- 400V class

ND Rating Code	Model name	VLD (Very light duty)		LD (Light duty)		ND (Normal duty)	
P1- HF $\square \square-$ HF \square		Motor capacity (kW(HP)) (4pole)	Rated Rurrent (A)	Motor capacity (kW(HP)) (4pole)	Rated current (A)	Motor capacity (kW(HP)) (4pole)	Rated current (A)
007	00041	$1.5(2)$	4.1	$1.5(2)$	3.1	$0.75(1)$	2.5
015	00054	$2.2(3)$	5.4	$2.2(3)$	4.8	$1.5(2)$	4.0
022	00083	$3.7(5)$	8.3	$3.7(5)$	6.7	$2.2(3)$	5.5
037	00126	$5.5(7.5)$	12.6	$5.5(7.5)$	11.1	$3.7(5)$	9.2
055	00175	$7.5(10)$	17.5	$7.5(10)$	16	$5.5(7.5)$	14.8
075	00250	$11(15)$	25	$11(15)$	22	$7.5(10)$	19
110	00310	$15(20)$	31	$15(20)$	29	$11(15)$	25
150	00400	$18.5(25)$	40	$18.5(25)$	37	$15(20)$	32
185	00470	$22(30)$	47	$22(30)$	43	$18.5(25)$	39
220	00620	$30(40)$	62	$30(40)$	57	$22(30)$	48
300	00770	$37(50)$	77	$37(50)$	70	$30(40)$	61
370	00930	$45(60)$	93	$45(60)$	85	$37(50)$	75
450	01160	$55(75)$	116	$55(75)$	105	$45(60)$	91
550	01470	$75(100)$	147	$75(100)$	135	$55(75)$	112
750	01760	$90(125)$	176	$90(125)$	160	$75(100)$	150
900	02130	$110(150)$	213	$110(150)$	195	$90(125)$	180
1100	02520	$132(175)$	252	$132(175)$	230	$110(150)$	217
1320	03160	$160(220)$	316	$160(220)$	290	$132(175)$	260

Standard Specifications

- 200V class specifications

Model name (P1- $\square \square \square \square \square$-L)				00044	00080	00104	00156	00228	00330	00460	00600	00800	00930	01240	01530	01850	02290	02950
Applicable motor capacity (4 poles) (kW) (*1)			VLD	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
			LD	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
			ND	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Output	Rated output current (A)		VLD	4.4	8.0	10.4	15.6	22.8	33.0	46.0	60.0	80.0	93.0	124	153	185	229	295
			LD	3.7	6.3	9.4	12.0	19.6	30.0	40.0	56.0	73.0	85.0	113	140	169	210	270
			ND	3.2	5.0	8.0	11.0	17.5	25.0	32.0	46.0	64.0	76.0	95.0	122	146	182	220
	Overload current rating(*2)		VLD	110\% 60sec / 120\% 3sec														
			LD	120\% 60sec / 150\% 3sec														
			ND	150\% 60sec / 200\% 3sec														
	Rated output voltage			3-phase (3-wire) 200 to 240 V (corresponding to input voltage)														
	Rated capacity (kVA)	200V	VLD	1.5	2.8	3.6	5.4	7.9	11.4	15.9	20.8	27.7	32.2	43.0	53.0	64.1	79.3	102.2
			LD	1.3	2.2	3.3	4.2	6.8	10.4	13.9	19.4	25.3	29.4	39.1	48.5	58.5	72.7	93.5
			ND	1.1	1.7	2.8	3.8	6.1	8.7	11.1	15.9	22.2	26.3	32.9	42.3	50.6	63.0	76.2
		240V	VLD	1.8	3.3	4.3	6.5	9.5	13.7	19.1	24.9	33.3	38.7	51.5	63.6	76.9	95.2	122.6
			LD	1.5	2.6	3.9	5.0	8.1	12.5	16.6	23.3	30.3	35.3	47.0	58.2	70.3	87.3	112.2
			ND	1.3	2.1	3.3	4.6	7.3	10.4	13.3	19.1	26.6	31.6	39.5	50.7	60.7	75.7	91.5
Input	Rated input AC voltage (*3)			Main circuit power supply: 3-phase 200 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, Control power supply: 1-phase 200 to 240V $50 / 60 \mathrm{~Hz}$														
	Permissible AC voltage/ Frequency fluctuation			AC voltage : 170 to $264 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, Frequency : $\pm 5 \%$														
	Power supply capacity (kVA) (*4)		VLD	2.0	3.6	4.7	7.1	10.3	15.0	20.9	27.2	36.3	42.2	56.3	69.4	83.9	103.9	133.8
			LD	1.7	2.9	4.3	5.4	8.9	13.6	18.1	25.4	33.1	38.6	51.3	63.5	76.7	95.3	122.5
			ND	1.5	2.3	3.6	5.0	7.9	11.3	14.5	20.9	29.0	34.5	43.1	55.3	66.2	82.6	99.8
Carrier frequency range (*5)			VLD	0.5 to 10.0 kHz														
			LD	0.5 to 12.0 kHz														
			ND	0.5 to 16.0 kHz														
Starting torque (*6)				200\% / 0.3Hz														
Braking	Regenerative Braking			Internal BRD circuit (external discarge resistor)											Ext. regen. braking unit			
	Minimum resistance value (Ω)			50	50	35	35	35	16	10	10	7.5	7.5	5	-	-	-	-
Protective structure				IP20 - UL Open Type														
Aprox. weight (kg)				3	3	3	3	3	6	6	6	10	10	10	22	33	33	47

- 400V class specifications

Model name (P1- $\square \square \square \square \square$ - ${ }^{\text {a }}$)				00041	00054	00083	00126	00175	00250	00310	00400	00470	00620	00770	00930	01160	01470	01760	02130	02520	03160
Applicable motor capacity (4 poles) (kW) (*1)			VLD	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160
			LD	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160
			ND	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132
Output	Rated output current (A)		VLD	4.1	5.4	8.3	12.6	17.5	25.0	31.0	40.0	47.0	62.0	77.0	93.0	116	147	176	213	252	316
			LD	3.1	4.8	6.7	11.1	16.0	22.0	29.0	37.0	43.0	57.0	70.0	85.0	105	135	160	195	230	290
			ND	2.5	4.0	5.5	9.2	14.8	19.0	25.0	32.0	39.0	48.0	61.0	75.0	91.0	112	150	180	217	260
	Overload current rating(*2)		VLD	110\% 60sec / 120\% 3sec																	
			LD	120\% 60sec / 150\% 3sec																	
			ND	150\% 60sec / 200\% 3sec																	
	Rated output voltage			3-phase (3-wire) 380 to 500 V (corresponding to input voltage)																	
	Rated capacity (kVA)	400V	VLD	2.8	3.7	5.8	8.7	12.1	17.3	21.5	27.7	32.6	43.0	53.3	64.4	80.4	101.8	121.9	147.6	174.6	218.9
			LD	2.1	3.3	4.6	7.7	11.1	15.2	20.1	25.6	29.8	39.5	48.5	58.9	72.7	93.5	110.9	135.1	159.3	200.9
			ND	1.7	2.8	3.8	6.4	10.3	13.2	17.3	22.2	27.0	33.3	42.3	52.0	63.0	77.6	103.9	124.7	150.3	180.1
		500V	VLD	3.6	4.7	7.2	10.9	15.2	21.7	26.8	34.6	40.7	53.7	66.7	80.5	100.5	127.3	152.4	184.5	218.2	273.7
			LD	2.7	4.2	5.8	9.6	13.9	19.1	25.1	32.0	37.2	49.4	60.6	73.6	90.9	116.9	138.6	168.9	199.2	251.1
			ND	2.2	3.5	4.8	8.0	12.8	16.5	21.7	27.7	33.8	41.6	52.8	65.0	78.8	97.0	129.9	155.9	187.9	225.2
Input	Rated input AC voltage (*3)			Main circuit power supply: 3-phase 380 to $500 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, Control power supply: 1-phase 380 to $500 \mathrm{~V} 50 / 60 \mathrm{~Hz}$																	
	Permissible AC voltage/ Frequency fluctuation			AC voltage: 323 to $550 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, Frequency : $\pm 5 \%$																	
	Power supply capacity (kVA) (*4)		VLD	3.7	4.9	7.5	11.4	15.9	22.7	28.1	36.3	42.6	56.3	69.9	84.4	105.2	133.4	159.7	193.2	228.6	286.7
			LD	2.8	4.4	6.1	10.1	14.5	20.0	26.3	33.6	39.0	51.7	63.5	77.1	95.3	122.5	145.2	176.9	208.7	263.1
			ND	2.3	3.6	5.0	8.3	13.4	17.2	22.7	29.0	35.4	43.5	55.3	68.0	82.6	101.6	136.1	163.3	196.9	235.9
Carrier frequency range (*5)			VLD	0.5 to 10.0 kHz														0.5 to 8.0 kHz			
			LD	0.5 to 12.0 kHz														0.5 to 8.0 kHz			
			ND	0.5 to 16.0 kHz														0.5 to 10.0 kHz			
Starting torque (*6)				$200 \% / 0.3 \mathrm{~Hz}$														$180 \% / 0.3 \mathrm{~Hz}$			
Braking	Regenerative Braking			Internal BRD circuit (external discarge resistor)												(*7)		Ext. regen. Braking unit			
	Minimum resistance value (Ω)			100	100	100	70	70	35	35	24	24	20	15	15	10	10	-	-	-	-
Protective structure				IP20 - UL Open Type														IP00			
Aprox. weight (kg)				3	3	3	3	6	6	6	8.5	8.5	8.5	22	31	31	31	41	41	53	53

[^2]| Items | | |
| :---: | :---: | :---: |
| PWM system | | |
| Output frequency range (*1) | | |
| Frequency accuracy | | |
| Frequency resolution | | |
| Control system (*2) | | |
| Speed fluctuation (*3) | | |
| Acceleration/deceleration time | | |
| Display | | |
| Start functions | | |
| Stop functions | | |
| Stall prevention function | | |
| Protection functions (*5) | | |
| Other functions | | |
| Input | Frequency setting | Panel |
| | | External signal (*6) |
| | | External port |
| | Forward / reverse Start / stop | Panel |
| | | External signal |
| | | External port |
| | Intelligent input terminals | |
| | | |
| | Backup sup | ly terminal |
| | STO input ter | minal |
| | Thermistor in | put terminal |
| Output | Intelligent output terminalsIntelligent alarm relay(1a, 1c) | |
| | | |
| | EDM outpu | erminal |
| | Output term | nal monitor (*7) |
| EMC filter activation (*8) | | |
| PC external access | | |
| Environment | Ambient tem | erature (*9) |
| | Storage tem | perature(*10) |
| | Level of hum | idity |
| | Vibration tolerance (*11) | |
| | Installation Place (*12) | |
| Components life span | | |
| Conformity standars (*13) | | |
| Optional slots | | |
| Option | Input / ouput | |
| | Communication | |
| | Feedback | |
| Other optional components | | |

Sine-wave PWM system

0.00 to 590.00 Hz

For the highest frequency, digital $\pm 0.01 \%$, analogue $\pm 0.2 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$
Digital: 0.01 Hz , Analogue: Max. frequency / 4000 (Ai1 terminal / Ai2 terminal: 12 bit / 0 to +10 V or 0 to $+20 \mathrm{~mA}, \mathrm{Ai} 3$ terminal: 12 bit/ -10 to +10 V) V/f control (constant torque / reduced torque / free),
Automatic boost control,V/f control with encoder (constant torque / reduced torque / free),
Automatic boost control, $/$ / control with encoder (constant torque /reduced torque / free),
Automatic boost control with encoder, Cascade type sensorless vector control, OHz sensorless vector control,

IM	$\begin{array}{l}\text { Automatic boost control with encoder, Cascade type sensorless vector control, } \mathrm{OHz} \text { sensorless vector control, } \\ \text { Cascade type vector control with encoder (position and torque). }\end{array}$

SM/PMM Methods of synchronous startup for vectorless smart control / Methods of IVMS startup for vectorless smart control $\pm 0.5 \%$ (sensorless vector control)
0.00 to 3600.00 s (Linear, S-curve, U-curve, Inverted-U-curve, EL-S-curve)

Output frequency, Output current, output torque, trip history, input/output terminal function, input/output power (*4), PN voltage, etc.
DC braking after the start, matching frequency after the start, active frequency matching start, Low-voltage start, retry restart.
After free run stop, deceleration stop; DC braking or external DC braking operation (Braking force, time, adjustment of operation speed) Overload limit function, overcurrent supression, overvoltage suppresion function
Overcurrent error, overload error, brake resistor overload, overvoltage error, memory error, undervoltage error, current detector error, CPU error, external trip error, USP error, ground error, supply overvoltage error, power loss error, temperature detector error, Cooling-fan rotation speed decrease, temperature error, phase input error, IGBT error, phase output error, thermistor error, brake error, low-speed range overload error, inverter overload, RS485communication error, RTC error etc.
V/f free setting (7 points), upper and lower frequency limit, frequency jump, curve acceleration and deceleration, manual torque boost, energysaving operation, analogue output adjustment, minimum speed, carrier frequency adjustment, motor electronic thermal function(free is possible), inverter thermal function, external start-end(speed and rate), frequency input selection, trip retry, restart stop, various signal output, initialization setting, PID control, auto-decel at shut-off, brake control function, commercial switching function, auto-tuning (on/offline) etc. Up, down left and right keys to the set parameter.
Ai1 / Ai2 terminal (Current and Voltage is able to switched.) 0 to 10 Vdc (input impedance: $10 \mathrm{k} \Omega$) / 0 to 20 mA (input impedance: 100Ω) Ai3 terminal
Multi-speed terminal Pulse train-input
-10 to +10 Vdc (Input impedance: $10 \mathrm{k} \Omega$)
16 multi-speed (With the use of the intelligent input terminal)
RS485serial communication (Protocol: Modbus-RTU, Maximum: 115.2kbps)
By RUN / Stop key (With the set parameter, forward / reverse can be switched)
Forward (FW) / Reverse (RV) / 3-wire input allowed (STA,STP,FR) (When input terminal functions are assigned)
RS485serial communication (Protocol: Modbus-RTU, Maximum: 115.2kbps)
11 terminals (A or B terminal accept a pulse train)
FW (Forward rotation) / RV (Reverse rotation), CF1 to 4 (Multi-speed 1 to 4), SF1 to 7 (Multi-speed bit 1 to 7), ADD (Trigger for frequency addition), SCHG (Command change), STA (3-wire start) / STP (3-wire stop) / FR (Forward/reverse by 3-wire), AHD (Analogue command holding, FUP (Remote control up) / FDN (Remote control down), UDC (Remote data clearance), F-OP(Forcible operation), SET (2nd-motor),
RS (Reset), JG (Jogging), DB (External DC braking), 2CH (2-stage acc / decel), FRS (Free-run stop), EXT (External trip),
USP (Unattended start protection), CS (Commercial power supply switching), SFT (Software lock), BOK (Braking confirmation),
OLR (Overload restriction selection), KHC (Accumulated input power clear), OKHC (Accumulated input), PID (PID1 disable),
PIDC (PID1 integration reset), PID2 (PID2 disable), PIDC2 (PID2 integration reset), SVC1 to 4 (PID1 multistage target value 1 to 4),
PRO (PID gain change), PIO1 (PID output change), SLP (SLEEP trigger) / WAKE (WAKE trigger), TL (Enable torque limit),
TRQ1/2 (Torque limit 1/2), PPI (P/PI switching), CAS (Control gain switching), FOC (Forcing), ATR (Enable torque command input),
TBS (Enable torque bias), LAC (Acceleration / Deceleration cancellation), Mi1 to 11 (General-purpose input1 to 11), PCC (Pulse counter clearance), ECOM (EzCOM activation), PRG (EzSQ programme start), HLD (Acc / decel stop), REN (Motion enable signal), DISP (Display lock),
PLA (Pulse train input A), PLB (Pulse train input B), DTR (Data trace start), DISP (Display lock) SON (servo on) ORT (orientation), PLA (Pulse train input A), PLB (Pulse train input B), DTR (Data trace start), DISP (Display lock), SON (servo on), ORT (orientation), PCLR (Clearance of position deviation), STAT (pulse train position command input enable), PUP (Position bias (ADD)),
PDN (Position bias (SUB)), CP1 to 4 (Multistage position settings selection 1 to 4), ORL (Limit signal of Homing function),
ORG (Start signal of Homing function), FOT (Forward Over Travel), ROT (Reserve Over Travel), SPD (speed / position switching), PSET (Position data presetting),
P+ / P-: DC24V input (Input allowable voltage: $24 \mathrm{~V} \pm 10 \%$)
2 terminals (Simultaneous input)
1 terminal (PTC / NTC resistor allowed)
Transistor output terminal 5, 1a contact relay 1 point, 1c contact relay 1 point
RUN (While in run), FA1 to 5 (Reached frequency signal), IRDY (Inverter ready), FWR (Forward rotation), RVR (Reverse rotation),
FREF (panel frequency reference), REF (panel motion operation), SETM (2nd-motor selected), AL (Alarm signal), MJA (Major failure signal),
OTQ (Over-torque), IP (Power loss), UV (Undervoltage), TRQ (Torque limited), IPS (Decel. Power loss), RNT (RUN time exceeded),
ONT (ON time exceeded), THM (Motor electronic thermal warning), THC (Electronic thermal warning), WAC (Capacitor life warning),
WAF (Cooling-fan life warning), FR (Operation signal), OHF (heat sink overheat warning), LOC / LOC2 (Low-current indication signal),
OL / OL2 (Overload warning signal 1/2), BRK (Brake release), BER (Brake error), ZS (OHz detection signal),
OD / OD2 (Output deviation for PID control), FBV / FBV2 (PID feedback comparison), NDc (Communication disconnection),
Ai1Dc / Ai2Dc /Ai3Dc (Analogue Ai1 / Ai2 /Ai3 disconnection), WCAi1 / WCAi / WCAi3 (Window comparator Ai1 / Ai / Ai3),
Ai1Dc / Ai2Dc / Ai3Dc (Analogue Ai1 / Ai2 / Ai3 disconnection), WCAi1 / WCAi2 / WCAi3 (Window comparator Ai1 / Ai2 / Ai3),
LOG1 to 7 (logical operation result 1 to 7), MO1 to 7 (General-output 1 to 7), OVS (Over-Voltage power supply), PCMP (Pulse counter compare output), WFT (Trace function waiting for trriger), TRA (Trace function data logging), PDD (Position deviation over),
POK (Positioning completed), etc.
Functional safety diagnostic output
The data of the monitor can be selected by the parameter of the output.
EMC filter can be activated (method to switch bares)
USB Micro-B
-10 to $50^{\circ} \mathrm{C}$ (ND), -10 to $45^{\circ} \mathrm{C}$ (LD), -10 to $40^{\circ} \mathrm{C}$ (VLD)
-20 to $65^{\circ} \mathrm{C}$
20 to 90% RH(No condensation allowed)
P1-00044-L (P1-004L) to P1-01240-L (P1-220L), P1-00041-H (P1-004H) to P1-00620H (P1-220H)
$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10$ to 55 Hz
More than P1-01530-L (P1-300L), More than P1-00770-H (P1-300H)
$2.94 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10$ to 55 Hz
A maximum altitude of 1000 m , without gases or dust.
Main circuit smoothing capacitors is 10 years. / Cooling-fan is 10 years.
UL, cUL, CE marking, RCM, Functional safety(SIL3, PLe, STO)(Crertification in process)
3 ports
Analog I/O (available soon)
Ethernet (Modbus TCP), EtherCAT, PROFIBUS-DP, PROFINET(available soon)
Line driver input (RS422)
Braking resistor, AC reactor, noise filter, operator cable, harmonics suppresion unit, noise filter, LCRfilter, analog panel, regenerative braking unit, PC software ProdriveNext, Screw type terminal block(P1-TM2)
*1: To operate the motor beyond $50 / 60 \mathrm{~Hz}$, please consult with the motor manufacturer about the maximum allowable rotation speed. *2: If the setting of the motor constant is not appropriate, there is a case when the starting torque is not sufficient or unstable. *3: Speed fluctuation will vary depending on your system and the motor of the use environment. Please contact us for more information.
*4: Both Input power and the output power are reference (not actual) value. Not suitable for calculations for such as the actual efficiency. *5: IGBT error [EO30] also occurs by IGBT damage not only 4: Both Input power and the output power are reference (not actual) value. Not suitable for calculations for such as the actual efficiency. *5: IGBT error [ENB] also occurs by IGBT damage not only
by short-circuit protection. Depending on the operating status of the inverter, Overcurrent error [E001] occurs instead of the IGBT error [E030]. *6: The frequency command is the maximum frequency at 9.8 V for input voltage 0 to 10 Vdc , or at 19.8 mA for input current 4 to 20 mA . Characteristic change is adjusted by using external start-end function. * 7 : The analogue voltage and analogue current monitor are estimated outputs of the analogue meter connection. Maximum output value might deviate slightly from 10 V or 20 mA by variation of the analogue output circuit. If you want to change the monitor are estimated outputs of the analogue meter connection. Maximum output value might deviate slightly from 10 V or 20 mA by variation of the analogue output circuit. If you want to change the
characteristics, adjust the Ao1 and Ao2 adjustment functions. There is monitor data that cannot be part of the output. ${ }^{*} 8$: When the EMC filter is enabled, please connected to the power supply with characteristics, adjust the A01 and Ao2 adjustment functions. There is monitor data that cannot be part of the output. *8: When the EMC filter is enabled, please connected to the pow
neutral grounding. Otherwise, it may increase leakage current. ${ }^{*} 9$: Derating is set in accordance to carrier frequency. *10: Storage temperature is the temperature during transport.
${ }^{*}$ neutral grounding. In accordance with the test methods of JIS C $60068-2-6: 2010$ (IEC $60068-2-6: 2007$). *12: In case of utilization at an altitude of 1000 m or more, take into account that the atmospheric pressure is reduced by 1% for very 100 m up. Please apply a derating of a 1% from the rated current every 100 m . Conduct and evaluation and contact us if you plan on using it above 2500 m .
reduced by 1% for very 100 m up. Please apply a derating of a 1\% from
*13: Insulation distance is in accordance with the UL and CE standards.

Protective Functions

Name	Cause (s)	Trip code
Over-current	The inverter output was short-circuited, or the motor shaft is locked or has a heavy load. These conditions cause excessive current for the inverter, so the inverter output is turned OFF. The protection circuit operates at approximately 220% (Parameter setting changeable) of the rated output current (ND rated).	E001
Overload protection (*1)	When a motor overload is detected by the electronic thermal function, the inverter trips and turns off its output.	E005
Braking resistor overload protection	When the regenerative braking resistor exceeds the usage time allowance or an over-voltage caused by the stop of the BRD function is detected, the inverter trips and turns off its output.	E006
Over-voltage protection	When the DC bus voltage exceeds a threshold, due to regenerative energy from the motor, the inverter trips and turns off its output.	E007
Memory error (*2)	When the built-in memory element has problems due to noise or excessive temperature, the inverter trips and turns off its output.	E008
Under-voltage error (*3)	A decrease of internal DC bus voltage below a threshold results in a control circuit fault. This condition can also generate excessive motor heat or cause low torque. The inverter trips and turns off its output.	E009
Current transformer error	If a strong source of electrical interference is close to the inverter or abnormal operations occur in the built-in CT , the inverter trips and turns off its output.	E010
CPU error (*4)	When a malfunction in the built-in CPU has occurred, the inverter trips and turns off its output.	E011
External trip	When a signal to an intelligent input terminal configured as EXT has occurred, the inverter trips and turns off its output.	E012
USP error	An error occurs when power is cycled while the inverter is in RUN mode if the Unattended Start Protection (USP) is enabled. The inverter trips and does not go into RUN mode until the error is cleared.	E013
Ground fault(*14)	The inverter is protected by the detection of ground faults between the inverter output and the motor during power-up tests. This feature protects the inverter only.	E014
Input over-voltage protection	When the input voltage is higher than the specified value, it is detected 100 seconds after power-up and the inverter trips and turns of its output. The overvoltage detection voltage is about 390 VDC (200 V class) and $780 \mathrm{VDC}(400 \mathrm{~V}$ class) between PN. (Parameter changeable).	E015
Instantaneous power failure	When power is cut for more than 15 ms , the inverter trips and turns off its output. If power failure continues, the error will be cleared. The inverter restarts if it is in RUN mode when power is cycled.	E016
Temperature detector error	The inverter will display the error code shown on the right if the lowering of cooling-fan speed is detected at the occurrence of the temperature error described below.	E019
Temperature error due to low cooling-fan speed	The inverter will display the error code shown on the right if the lowering of cooling-fan speed is detected at the occurrence of the temperature error described below.	E020
Inverter thermal trip	When the inverter internal temperature is higher than the specified value, the thermal sensor in the inverter module detects the higher temperature of the power devices and trips, turning off the inverter output.	E021
Phase loss input protection (*5)	One of three lines of 3-phase power supply is missing. Decision time is about 1 s . (When the input phase loss effective function is enabled.	E024
IGBT error (*6)	When an instantaneous over-current has occurred, the inverter trips and turns off its output to protect main circuit element.	E030
Phase loss output protection (*7)	One of three lines of 3-phase power output is missing. Decision time is about 1 s . (When the output phase loss effective function is enabled.	E034
Thermistor error	When the thermistor inside the motor detects temperature higher than the specified value, the inverter trips and turns off its output.	E035
Braking error	The inverter turns off its output when it can not detect whether the braking is ON or OFF within waiting time after it has released the brake. (When braking function is enabled.)	E036
Low-speed overload protection	If overload occurs during the motor operation at a very low speed at 0.2 Hz or less, the electronic thermal protection circuit in the inverter will detect the overload and shut off the inverter output. (Note that a high frequency may be recorded as the error history data.)	E038
Inverter's Overload protection (*1)	When the inverter itself overload is detected by the electronic thermal function, the inverter trips and turns off its output.	E039
Modbus (RS-485) communication error	If timeout occurs because of line disconnection during the communication in Modbus-RTU mode, the inverter will display the error code shown on the right.	E041
EzSQ invalid instruction	This trip occurs when an invalid instruction is detected in EzSQ program.	E043
EzSQ Nesting count Error	This trip occurs when number of nesting times is exceeded in EzSQ program.	E044
EzSQ instruction Error	This trip occurs when an can not executed instruction is detected in EzSQ program.	E045
EzSQ User Setting Error 0 to 9	These trips occur when a user specified trip instruction is executed in the program.	$\begin{aligned} & \text { E050 } \\ & \text { to E059 } \end{aligned}$
There is an error in the STO path	For more information, please refer to the P1 functional safety guide.	$\begin{gathered} \text { E090 } \\ \text { to E093 } \end{gathered}$

 detected correctly. *8: Inverter repair is necessary when this error occurs. Please contact your service or sales dept.
-P1-00044-LF $\square \mathrm{F}$ to 00228-LF $\square \mathrm{F}$
-P1-00041-HF $\square \mathrm{F}$ to 00126-HF $\square F$

$\cdot P 1-00600-L F \square F \quad \cdot P 1-00310-H F \square F$

-P1-00330-LF \square F, P1-00460-LF $\square F$ -P1-00175-HF \square F, P1-00250-HF $\square F$

-P1-00800-LF $\square \mathrm{F}, \mathrm{P} 1-00930-L F \square \mathrm{~F}, \mathrm{P} 1-01240-L F \square \mathrm{~F}$

$\cdot P 1-00400-H F \square F$, P1-00470-HF $\square F$, P1-00620-HF $\square F$

-P1-01850-LF $\square \mathrm{F}, \mathrm{P} 1-02290-\mathrm{LF} \square \mathrm{F}$
$\cdot P 1-00930-H F \square F, P 1-01160-H F \square F, P 1-01470-H F \square F$

$\cdot P 1-01530-L F \square F \quad \cdot P 1-00770-H F \square F$

-P1-02950-LF $\square F$

-P1-01760-HF \square F, P1-02130-HF \square F

-P1-02520-HF \square F, P1-03160-HF $\square F$

Terminals

Main Circuit Terminals

- Terminal Description

Terminal Symbol	Terminal Name	Terminal Symbol	Terminal Name
R/L1, S/L2, T/L3	Main power supply input terminals	P/+, N/-	External braking unit connection terminals
U/T1, V/T2, W/T3	Inverter output terminals	G	Ground connection terminal
PD/+1, P/+	DC reactor connection terminals	RO, TO	Control power supply input terminals
P/+, RB	External braking resistor connection terminals		

- Screw Diameter and Terminal Width

Model	Screw diameter	Ground Screw diameter	Terminal width (mm)	Terminal Arrangement
P1-00044-LFF to P1-00228-LFF / P1-00041-HFF to P1-00126-HFF	M 4	M 4	10	Figure 1
P1-00330-LFF, P1-00460-LFF / P1-00175-HFF, P1-00250-HFF	M 5	M 5	13	Figure 2
P1-00600-LFF, P1-00310-HFF	M 6	M 6	16.5	Figure 2
P1-00800-LFF, P1-00930-LFF	M 6	M 6	23	Figure 3
P1-01240-LFF	M 8	M 6	23	Figure 3
P1-00400-HFF to P1-00620-HFF	M 6	M 6	16.5	Figure 4
P1-01530-LFF	M 8	M 6	22	Figure 5
P1-01850-LFF, P1-02290-LFF	M 8	M 8	29	Figure 5
P1-02950-LFF	M 10	M 8	40	Figure 5
P1-00770-HFF	M 6	M 6	22	Figure 6
P1-00930-HFF to P1-01470-HFF	M 8	M 8	29	Figure 6
P1-01760-HFF, P1-02130-HFF	M 10	M 8	29	Figure 7
P1-02520-HFF, P1-03160-HFF	M 10	$\mathrm{M8}$	40	Figure 5

- Terminal Arrangement

Figure 1 P1-00044-L to P1-00228-L / P1-00041-H to P1-00126-H

Figure 3 P1-00800-L, P1-01240-L

Figure 5 P1-01530-F to P1-02950-L / P1-02520-H, P1-03160-H

Figure 7 P1-01760-H, P1-02130-H

Figure 2 P1-00330-L to P1-00600-L / P1-00175-H to P1-00310-H

Figure 4 P1-00400-H to P1-00620-H

ge le							
R0	T0	R/L1	S/L2	T/L3	U/T1	V/T2	W/T3
		$\mathbf{G}+$	PD/+1	P/+	N/-	RB	$\mathbf{G}(\underset{)}{ }$

Figure 6 P1-00770-H to P1-01470-H

Control Circuit Terminals

- Terminal Arrangement

(*1 Certification in process) ($* 2$ Please note that the initial state of the P1-*****_**E*(Europe version) is SourceType, so it is different from this figure.)

- Configuration of switches

Indication	Name of switch	
Ai1(SW1)	Analog input 1 change	Change the input specification of Analog input 1 (Ai1 terminal). 10V: Voltage input is available. 20mA: Current input is available.
Ai2(SW2)	Analog input 2 change	Change the input specification of Analog input 2 (Ai2 terminal). 10V: Voltage input is available. 20mA: Current input is available.
Ao1(SW3)	Analog output 1 change	Change the output specification of Analog output 1 (Ao1 terminal). 10V: Voltage output is applied. 20mA: Current output is applied.
Ao2(SW4)	Analog output 2 change	Change the output specification of Analog output 2 (Ao2 terminal). 10V: Voltage output is applied. 20mA: Current output is applied.
P.SEL(SW5)	Change of the power supply method to input terminals	Change the power supply method to input terminals. IN: Activate input terminals by an internal power source. EX: Activate input terminals by inputting an external power source.(For EX, power supply is required between input terminals and COM.)
SRC/SINK(SW6)	Input terminal Sink/Source logic switching	Sink or source logic of the input terminal is switched. This is enabled when SW5 is IN. SINK: Switch to Sink logic. SRC: Switch to Source logic.

- Terminal Description

		Symbol	Terminal name	Description	Electric characteristics
Voltage/current switchable analog input/output terminal	Power supply	L	COM for analog power supply	COM terminals for analog input terminals (Ai1,Ai2,Ai3) and analog output terminals (Ao1,Ao2). Two L terminals are available.	-
		H	Speed setting power supply	DC10V power supply. Used for voltage input with analog input terminals (Ai1,Ai2,Ai3) using a variable resister.	Max. allowable input current 20 mA
	Analog input	Ai1	Analog input terminal 1 (Voltage/current selector SW1)	Either Ai1 or Ai2 can be used by switching the selector switch to DCO to 10 V voltage input or 0 -to 20 mA current input. Used as speed input and feedback input.	For voltage input: - Input impedance Approx.10k Ω - Allowable input voltage DC-0.3V to 12 V For current input: - Input impedance Approx. 100Ω - Max. allowable input current 24 mA
		Ai2	Analog input terminal 2 (Voltage/current selector SW2)		
		Ai3	Analog input terminal 3	DC-10 to 10 V voltage input is available. Used as speed input and feedback input.	Voltage input only: - Input impedance Approx.10k Ω - Allowable voltage input DC-12V to 12 V
	Analog output	Ao1	Analog output terminal 1 (Voltage/current selector SW3)	Either Ao1 or Ao2 can be used as an output for inverter monitoring data by switching the selector switch to DC0 to 10 V voltage output or 0 to 20 mA current output.	For voltage output: - Max. allowable output current 2mA - Output voltage accuracy $\pm 10 \%$ (Ambient temperature: 25 ± 10 degrees C) For current input: - Allowable load impedance 250Ω or less - Output current accuracy $\pm 20 \%$ (Ambient temperature: 25 ± 10 degrees C)
		Ao2	Analog output terminal 2 (Voltage/current selector SW4)		
24 V power supply	Power input	P24	24 V output power source terminal	This terminal supplies DC24V power for contact signals.	Max. output 100mA
		P+	Terminal for external 24 V input (24V)	Input external DC24V power supply to the inverter. Inputting 24 V power supply can change parameter settings and perform optional communication operations without control power supply.	Allowable input voltage $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%$ Max. allowable current 1A
		P-	Terminal for external 24 V input (0 V)		

			Symbol	Terminal name	Description	Electric characteristics
Intelligent input terminal	Digital input	Contact point	9 8 7 6 5 4 3 2 1	Input terminal	Terminal functions are selectable according to the parameter settings for each terminal. Switching SW6 to SRC or SINK allows you to select SINK or Source logic.	Voltage between each input and COM terminals - ON voltage Min.DC18V - OFF voltage Max.DC3V - Max. allowable voltage DC27V - Load current 5.6mA(at DC27V)
			A	Pulse input-A		Voltage between an input and COM terminals
		Pulse	B	Pulse input-B	as an input terminal. Terminal functions are selectable according to the parameter settings for each terminal. The maximum input pulse rate is 32 kpps .	- OFF voltage Max.DC3V - Max. allowable voltage DC27V - Load current 5.6mA(at DC27V) - Max input pulse rate 32 kpps
		Common	COM	Input (common)	This is a common terminal for digital input terminals ($1,2,3,4,5,6,7,8,9, \mathrm{~A}$ and B). Three COM terminals are available.	
Intelligent output terminals	Digital output	Open collector	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$	Output terminal	Terminal functions are selectable according to the parameter settings for each terminal. This is available for both SINK and Source logics.	Open collector output Between each terminal and CM2 - Voltage drop when turned on:4V or less - Max. allowable voltage 27V - Max. allowable current 50 mA
			CM2	Output (common)	This is a common terminal for output terminals 11 to 15.	
		Relay	$\begin{aligned} & 16 \mathrm{~A} \\ & 16 \mathrm{C} \end{aligned}$	1a relay terminal	Relays for A contact output	Maximum contact capacity - AC250V, 2A(resistance) - $\mathrm{AC} 250 \mathrm{~V}, 1 \mathrm{~A}$ (inductive load) (Minimum contact capacity) - DC1V, 1 mA
			ALO AL1 AL2	1c relay terminal	Relays for C contact output	Maximum contact capacity AL1/ALO: - AC250V, 2A(resistance) - AC250V, 0.2A(inductive load) AL2/ALO: - AC250V, 1A(resistance) - AC250V, 0.2A(inductive load) Minimum contact capacity (common) - AC100V, 10 mA - DC5V, 100 mA
FM output terminal	FM output	Monitor output	FM	Digital monitor (voltage)	Digital monitor output is selectable from PWM output with 6.4 ms cycle or pulse output with a variable duty cycle of approx. 50%.	Pulse train output DC0 to 10 V - Max. allowable output current 1.2 mA - Maximum frequency 3.60 kHz
			CM1	COM for digital monitor	This is a common terminal for digital monitor. This is also used as 0 V reference potential for P24.	
Thermistor terminal	Analog input		TH+ TH-	External thermistor input Common terminal for external thermistor input	Connect to an external thermistor to make the inverter trip if an abnormal temperature is detected. Connect the thermistor to TH+ and TH-. The impedance to detect temperature errors can be adjusted within the range 0Ω to $9,999 \Omega$. [Recommended thermistor properties] Allowable rated power: 100 mW or more Impedance at temperature error: $3 \mathrm{k} \Omega$	DC0 to 5V[Input circuit]
RS485 communication	Serial communic		SP SN RP (CM1)	MODBUS terminal (RS-485)	SP terminal : RS-485 differential(+) signal SN terminal : RS-485 differential(-) signal RP terminal : Connect to SP through a termination resistor CM1 terminal : Connect to the signal ground of external cmmunication devices. There are two SP and two SN terminals, which are connected internally. The maximum baud rate is 115.2 kbps .	Termination resistor (120 $)$ integrated Enabled: RP-SN shorted Disabled: RP-SN opened
Safety terminals	Power supply for Safety		P24S	24 V output power source terminal	DC24V power supply for ST1/ST2 terminals. Using in source logic, this terminal becomes input COM.	Max. allowable output current 20 mA .
			CMS	COM terminal for functional safety	COM terminal for ST1/ST2 terminals. Using in sink logic, this terminal becomes input COM.	
			STC	Logic switching terminal	Using ST1/ST2 in source logic, connect STC and CMS. Using ST1/ST2 in sink logic, connect STC and P24S. Using external power supply, connect external circuit to STC.	
	Input	STO functions	ST1 ST2	STO input1 STO input2	Redundancy input terminals of the STO. For STO function, input to both terminals.	Voltage between each input and P24S or between each input and CMS. - ON voltage Min.DC18V - OFF voltage Max.DC3V - Max. allowable voltage DC27V - Load current 5.6mA(at DC27V)
	Monitoring	Open collector	ED+	Output terminal for monitoring	Monitoring terminals for STO operation. This terminal can not be used for safety function operation.	Open collector output between ED+ and ED- - Voltage drop when turned on:4V or less - Max. allowable voltage 27V - Max. allowable current 50 mA
			ED-	Output COM terminal for monitoring		

Connecting to PLC

- Connection with Input Terminals

1. Using Internal Power Supply of The Inverter

-When using internal power supply of the inverter, the SW5 to "IN". -When connecting sink type module, the SW6 to "SINK".

2.Using External Power Supply

(2) Source type logic

-When using internal power supply of the inverter, the SW5 to "IN". -When connecting source type module, the SW6 to "SRC".
(2) Source type logic

-When using external power supply, the SW5 to "EXT". -When connecting source type module, the SW6 to "SRC".
(Note: Be sure to turn on the inverter after turning on the PLC and its external power source to prevent the parameters in the inverter from being modified.)

- Connection with Output Terminals

Function List

■Monitor mode List

Code No.	Parameter Meaning	Selectable User Setting
dA-01	Output frequency monitor	0.00 to 590.00 (Hz)<current outout frequency>
dA-02	Output current monitor	0.00 to 655.35(A)
dA-03	Rotation direction monitor	F (Forward RUN) /r (Reverse RUN) /d (Zero-speed Out) /o (Stop)
dA-04	Frequency reference monitor(After calculation)	-590.00 to $590.00(\mathrm{~Hz})$ ¢target value>
dA-06	Output frequency scale conversion monitor	0.00 to 59000.00 (Hz)
dA-08	Detect speed monitor	-590.00 to $590.00(\mathrm{~Hz}$ <monitor feedback is required>
dA-12	Output Frequency Monitor (signed)	-590.00 to 590.00(Hz)
dA-14	Frequency upper limit monitor	0.00 to 590.00(Hz)
dA-15	Torque reference monitor(After calculation)	-1000.0 to 1000.0(\%)<Torque control mode required>
dA-16	Torque limit monitor	0.0 to 500.0(\%)
dA-17	Output Torque monitor	-1000.0 to 1000.0(\%)
dA-18	Output Voltage monitor	0.0 to 800.0 (V)
dA-20	Current position monitor	when [AA123] $\neq 03$ -268435455 to +268435455 (pulse)/ when [AA123]=03 -1073741823 to +1073741823 (pulse)
dA-26	Pulse train position deviation monitor	-2147483647 to +2147483647(pulse)
dA-28	Pulse count monitor	0 to 2147483647(pulse)
dA-30	Input power monitor	0.00 to $600.00(\mathrm{~kW})$
dA-32	Accumulation input power monitor	0.0 to 1000000.0 (kWh
dA-34	Output power monitor	0.00 to 600.00 (kW)
dA-36	Accumulation output power monitor	0.0 to 1000000.0 (kWh)
dA-38	Motor temperature monitor	-20.0 to 200.0 ${ }^{(} \mathrm{C}$)
dA-40	DC-bus voltage monitor	0.0 to $1000.0(\mathrm{Vdc})$
dA-41	BRD Load rating monitor	0.00 to 100.00 (\%)
dA-42	Electronic thermal Load rating monitor (MTR)	
dA-43	Electronic thermal Load rating monitor (CTL)	
dA-45	Safety STO monitor	00 (no) /01 (P-1A) /02 (P-2A) /03 (P-1b) /04 (P-2b) /05 (P-1C)/06 (P-2C) /07 (STO)
dA-46	Safety option hardware monitor	Refer to guidebook for option
dA-47	Safety option monitor	
dA-50	Control terminal status	00 (Standard) 02 (P1-TM2) /15 (Not connect)
dA-51	Input terminal monitor	LLLLLLLLLLLL to HHHHHHHHHHH [L:OFF/H:ON] $[\mathrm{left]}(\mathrm{~B})(\mathrm{A})(9)(8)(7)(6) \quad(5)(4)(3)(2)(1)[$ right $]$
dA-54	Output terminal monitor	LLLLLLL to HHHHHHH [L:OFF/H:ON] [left](AL)(16c)(15)(14)(13) (12)(11)[right]
dA-60	Analog input/output status monitor	AAAAAAAA to VVVVVVVV [A:current/V:voltage] [left](Ao4)(Ao3)(EAi2)(EAi1) (Ao2)(Ao1)(Ai2)(Ai1)[right]
dA-61	Analog input [Aii] monitor	0.00 to 100.00(\%)
dA-62	Analog input [Ai2] monitor	
dA-63	Analog input [Aili] monitor	-100.00 to 100.00(\%)
dA-64	Extension Analog input [Ai4] monitor	0.0 to 100.00(\%)
dA-65	Extension Analog input [Ais] monitor	
dA-66	Extension Analog input [Ait] monitor	-100.00 to 100.00(\%)
dA-70	Pusse train input monitor (internal)	-100.00 to 100.00(\%)
dA-71	Pulse train input monitor (Option)	-100.00 to 100.00(\%)
dA-81	Option slot-1 status	
dA-82	Option slot-2 status	
dA-83	Option slot-3 status	
db-01	Program download monitor	00 (Program is not installed) /01 (Program is installed)
db-02	Program No. monitor	0000 to 9999
db-03	Program counter (Task-1)	1 to 1024
db-04	Program counter (Task-2)	
db-05	Program counter (Task-3)	
db-06	Program counter (Task-4)	
db-07	Program counter (Task-5)	
db-08	User monitor-0	-2147483647 to +2147483647
db-10	User monitor-1	
db-12	User monitor-2	
db-14	User monitor-3	
db-16	User monitor-4	
db-18	Analog output monitor YAO	0 to 10000
db-19	Analog output monitor YA1	
db-20	Analog output monitor YA2	
db-21	Analog output monitor YA3	
db-22	Analog output monitor YA4	
db-23	Analog output monitor YA5	
db-30	PID1 Feedback value 1 monitor	0.00 to 100.00(\%)(adjustable with [AH-04][AH-05][AH-06])
db-32	PID1 Feedback value 2 monitor	
db-34	PID1 Feedback value 3 monitor	
db-36	PID2 Feedback value monitor	0.00 to 100.00(\%)(adjustable with [AJ-04][AJ-05][AJ-06])
db-38	PID3 Feedback value monitor	0.00 to 100.00(\%)(adjustable with [AJ-24][AJ-25][AJ-26])
db-40	PID4 Feedback value monitor	0.00 to 100.00(\%)(adjustable with [AJ-44][AJ-45][AJ-46])
db-42	PID1 target value monitor	0.00 to 100.00(\%)(adjustable with [AH-04][AH-05][AH-06])
db-44	PID1 feedback value monitor	
db-50	PID1 Output monitor	-100.00 to +100.00 (\%)
db-51	PID1 Deviation monitor	
db-52	PID1 Deviation 1 monitor	
db-53	PID1 Deviation 2 monitor	
db-54	PID1 Deviation 3 monitor	

Code No.	Parameter Meaning	Selectable User Setting
db-55	PID2 Output monitor	-100.00 to $+100.00(\%)$
db-56	PID2 Deviation monitor	
db-57	PID3 Output monitor	
db-58	PID3 Deviation monitor	
db-59	PID4 Output monitor	
db-60	PID4 Deviation monitor	
db-61	Current PID P-Gain monitor	0.0 to 100.0
db-62	Current PID I-Gain monitor	0.0 to 3600.0(s)
db-63	Current PID D-Gain monitor	0.00 to 100.00(s)
db-64	PID FeedForward monitor	
dC-01	Inverter Load type status	00 (VLD) /01 (LD) /02 (ND)
dC-02	Rated current monitor	0.0 to 6553.5(A)
dC-07	Main speed input source monitor	Displayed on operator panel. Refer to user's guide for detail.
dC-08	Sub speed input source monitor	
dC-10	RUN command input source monitor	
dC-15	Cooling-fin temperature monitor	-20.0 to $200.0\left({ }^{\circ} \mathrm{C}\right)$
dC-16	Life assessment monitor	LL to HH[L:normal/H:Fatigued] [left](FAN lifetime)(Capacitor on board lifetime)[right]
dC-20	Accumulation Start number monitor	1 to 65535(times)
dC-21	Accumlation Power-on number monitor	
dC-22	Accumulated time monitor in RUN status monitor	0 to 1000000(hour)
dC-24	Accumulation power-on time monitor	
dC-26	Accumulation cooling fan running time monitor	
dC-37	Icon 2 LIM monitor	00:-- /01(OC suppress) /02 (OL restriction) /03 (OV suppress) /04 (TRQ Limit) /05 (Freq Limit) /06 (Min.Freq)
dC-38	Icons2 ALT monitor	00 (--) /01(Over Load) /02 (Thermal(Motor)) /03 (Thermal(CTR)) /04 (Over Heat(MTR))
dC-39	Icons2 RETRY detail monitor	00(--) / 01(waiting to retry) $/ 02$ (waiting to restart)
dC-40	Icons2 NRDY detail monitor	00 (--) /01(Trip) /02 (Power failure) /03 (Reset) /04 (STO) /05 (Wait) /06 (Warning) /07 (Sequence Error) /08 (Freerun) /09 (interrupted)
dC-45	IM/SM monitor	00 (IM) /01 (SM)
dC-50	Firmware Ver. Monitor	00.00 to 99.255
dC-53	Firmware Gr. Monitor	00(Standard)
dE-50	Warnning monitor	Refer to user's guide

- Variable mode monitor (F code)

Code No.	Parameter Meaning	Selectable User Setting
FA-01	Main Speed reference monitor	0.00 to $590.00(\mathrm{~Hz})$
FA-02	Sub Speed reference monitor	-590.00 to $590.00(\mathrm{~Hz})$ when configured with parameter, 0.00 to $590.00(\mathrm{~Hz})$
FA-10	Acceleration time monitor	0.00 to 3600.00(s)
FA-12	Deceleration time monitor	
FA-15	Torque reference monitor	-500.0 to 500.0(\%)
FA-16	Torque bias monitor	-500.0 to 500.0(\%)
FA-20	Position reference monitor	```when [AA123] \(\neq 0\) -268435455 to +268435455 (pulse)/ when [AA123]=03 -1073741823 to +1073741823 (pulse)```
FA-30	PID1 Set Value 1 monitor	0.00 to 100.00(\%)(adjustable with [AH-04][AH-05][AH-06])
FA-32	PID1 Set Value 2 monitor	
FA-34	PID1 Set Value 3 monitor	
FA-36	PID2 Set Value monitor	0.00 to 100.00(\%)(adjustable with [AJ-04][AJ-05][AJ-06])
FA-38	PID3 Set Value monitor	0.00 to 100.00(\%)(adjustable with [AJ-24][AJ-25][AJ-26])
FA-40	PID4 Set Value monitor	0.00 to 100.00(\%)(adjustable with [AJ-44][AJ-45][AJ-46])

- Parameter mode List

Parameter naming (Nomenclature)

*By default the motor 1 us enabled in the case that $08:[\mathrm{SET}]$ is not assigned in the intelligent Input terminals [CA-01] to [CA-11].

AA 101
 Internal number in the group
 ■ -:Common for 1st and 2nd motor $1: 1$ st motor enabled if function [SET] is OFF 2:2nd motor enabled if function [SET] is ON
 - Parameter group

- Parameter mode (A code)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
AA101	Main speed input source selection, 1st-motor	01 (Setting by Terminal [Ai1])/02 (Setting by Terminal [Ai2]) 103 (Setting by Terminal [Ai3]) /04 (Setting by Terminal [Ai4]) 105 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) 107 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option)) /14 (Setting by EzSQ) /15 (PID function) /16 (Volume on keypad)	07(*FF) / 01(*FEF, *FUF)
AA102	Sub frequency input source selection, 1st-motor	00 (Disable) /01 (Setting by Terminal [Ai1]) 102 (Setting by Terminal [Air]) /03 (Setting by Terminal [Ai3]) /04 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) 106 (Setting by Terminal [Ai6]) /07 (Setting by parameter) 108 (Setting by RS485) 09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option)) /14 (Setting by EzSQ) /15 (PID function) /16 (Volume on keypad)	00
AA104	Sub speed setting, 1st-motor	0.00 to $590.00(\mathrm{~Hz})$	0.00
AA105	Calculation symbol selection for Speed reference, 1st-motor	00 (Disable) /01 (Addition(ADD)) /02 (Subtraction(SUB)) /03 (Multiplication(MUL))	00
AA106	Add frequency setting, 1st-motor	-590.00 to $+590.00(\mathrm{~Hz})$	0.00
AA111	Run-command input source selection, 1st-motor	00 (Terminal [FW]/[RV]) /01 (3-wire) /02 (RUN key on keypad) /03 (Setting by RS485) /04 (Option-1) /05 (Option-2) 106 (Option-3)	02(*FF)/ 00 (*FEF, *FUF)
AA-12	RUN-key of keypad Rotation Direction, 1st-motor	00 (Forward) /01 (Reverse)	00
AA-13	STOP-key enable at RUNcommand from terminal, 1st-motor	00 (Disable)/01 (Enable)/02 (Enable at only trip reset)	01
AA114	RUN-direction restriction, 1st-motor	00 (Disable) /01 (Enable only Forward rotation) /02 (Enable only Reverse rotation)	00
AA115	STOP mode selection, 1st-motor	00 (Deceleration until stop)/01 (Free-run stop)	00
AA121	Control mode selection, 1st-motor	IM control: 00 (VF control (Constant torque)) 101 (VF control (Reduced torque)) /02 (VF control (Free-V/f)) 103 (Constant torque with Automatic- trq boost)) 104 (VF control with encoder (Constant torque)) 105 (VF control with encoder (Reduced torque)) 106 (VF control with encoder (Free-V/f)) 107 (VF control with PG (Constant torque with Automatc-trq boost)) 108 (Sensorless vector control) $109(0 \mathrm{~Hz}$ Sensorless vector control) /10 (Vector control with encoder) SM/PMM control: 11 (Synchronous start up for smart sensorless vector control) /12 (IVMS start up for smart sensorless vector control)	00
AA123	Vector control mode selection, 1st-motor	00 (Speed/Torque control mode) /01 (Pulse train position control) 102 (Position control) /03 (High-resolution position control)	00
AA201	Main speed input source selection, 2nd-motor	same to AA101	07(*FF)/ 01(*FEF, *FUF)
AA202	Sub speed input source selection, 2nd-motor	same to AA102	00
AA204	Sub speed setting, 2nd-motor	same to AA104	0.00
AA205	Calculation symbol selection for Speed reference, 2nd-motor	same to AA105	00
AA206	Add frequency setting, 2nd-motor	same to AA106	0.00
AA211	Run-command input source selection, 2nd-motor	same to AA111	02(*FF)/ 00 (*FEF, *FUF)
AA214	RUN-direction restriction, 1st-motor	same to AA114	00
AA215	STOP mode selection, 1st-motor	same to AA115	00
AA221	Control mode selection, 2nd-motor	same as AA121	00
AA223	Vector control mode selection, 2nd-motor	same to AA123	00
Ab-01	Frequency conversion gain	0.01 to 100.00	1.00
Ab-03	Multispeed operation selection	00 (Binary (16-speeds)) /01 (Bit (8-speeds))	00
Ab110	Multispeed-0 setting, 1st-motor	0.00 to $590.00(\mathrm{~Hz})$	0.00
$\begin{gathered} \mathrm{Ab}-11 \text { to } \\ \mathrm{Ab}-25 \end{gathered}$	Multispeed-1 to Multispeed-15 setting		
Ab210	Multispeed-0 setting, 2nd-motor		

Code No.	Parameter Meaning	Selectable User Setting	Initial value
AC-01	Acceleration/ Deceleration time input selection	00 (Setting by parameter) /01 (Setting from Option-1) 102 (Setting from Option-2) /02 (Setting from Option-3) /04 (Setting by programing function)	00
AC-02	Acceleration/ Deceleration selection	00 (Common setting) /01 (Multi stage Acceleration/ Deceleration)	00
AC-03	Acceleration curve selection	00 (Liner Acceleration) /01 (S-curve Acceleration) /02 (U-curve Acceleration) /03 (Reverse U-curve Acceleration) /04 (Eleveter S-curve Acceleration)	00
AC-04	Deceleration curve selection		
AC-05	Acceleration curve constant setting	1 to 10	2
AC-06	Deceleration curve constant setting		
AC-08	EL-S-curve ratio @start of acceleration	0 to 100	25
AC-09	EL-S-curve ratio @end of acceleration		
AC-10	EL-S-curve ratio @start of deceleration		
AC-11	EL-S-curve ratio @end of deceleration		
AC115	Select method to switch to Accel2/Decel2 Profile, 1st-motor	00 (Switching by $[2 \mathrm{CH}]$ terminal) /01 (Switching by setting) /02 (Switching only when rotation is reversed)	00
AC116	Accel1 to Accel2 Frequency transition point, 1st-motor	0.00 to $590.00(\mathrm{~Hz})$	0.00
AC117	Decel1 to Decel2 Frequency transition point, 1st-motor		
AC120	Acceleration time setting 1 , 1st-motor	0.00 to 3600.00(s)	30.00
AC122	Deceleration time setting 1 , 1st-motor		
AC124	Acceleration time setting 2, 1st-motor		15.00
AC126	Deceleration time setting 2, 1st-motor		
AC-30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86	Acceleration time setting for Multispeed-1 to Multispeed-15	0.00 to 3600.00(s)	0.00
AC-32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88	Deceleration time setting for Multispeed-1 to Multispeed-15		
AC215	Select method to switch to Accel2/Decel2 Profile, 2nd-motor	same to AC115	00
AC216	Accel1 to Accel2 Frequency transition point, 2nd-motor	same to AC116	0.00
AC217	Decel1 to Decel2 Frequency transition point, 2nd-motor	same to AC117	
AC220	Acceleration time setting 1, 2nd-motor	same to AC120	30.00
AC222	Deceleration time setting 1 , 2nd-motor	same to AC122	
AC224	Acceleration time setting 1, 2nd-motor	same to AC124	15.00
AC226	Deceleration time setting 1 , 2nd-motor	same to AC126	
Ad-01	Torque reference input source selection	01 (Setting by Terminal [Ai1])/02 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3])/04 (Setting by Terminal [Ai4]) 105 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) 107 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option)) /14 (Setting by EzSQ) /15 (PID function)	07
Ad-02	Torque reference value setting	-500.0 to 500.0(\%)	0.0
Ad-03	Polarity selection for torque reference	00 (As indication by the sign) 101 (Depending on the operation direction)	00
Ad-04	Switching time of Speed contorl to Torque control	0 to 1000(ms)	100
Ad-11	Torque bias input source selection	00 (Disable) /01 (Setting by Terminal [Ai1]) /02 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) 104 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) 09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option)) /15 (PID function)	00
Ad-12	Torque bias value setting	-500.0 to 500.0(\%)	0.0
Ad-13	Polarity selection for torque bias	00 (As indication by the sign) /01 (Depending on the operation direction)	00
Ad-14	Terminal [TBS] active	00 (Disable) /01 (Enable)	00
Ad-40	Input selection for speed limit at torque control	01 (Setting by Terminal [Ai1])/02 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) /04 (Setting by Terminal [Ai4]) 105 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) 107 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option))	07
Ad-41	Speed limit at torque control (at Forward rotation)	0.00 to $590.00(\mathrm{~Hz})$	0.00
Ad-42	Speed limit at torque control (at Reverse rotation)		

Code No.	Parameter Meaning	Selectable User Setting	Initial value	Code No.	Parameter Meaning	Selectable User Setting	Initial value
AE-01	Electronic gear setting point selection	00 (Feedback side) /01 (Reference side)	00	AF136	Brake Release Current Setting, 1st-motor	INV rated current $\times(0.00$ to 2.00)	$1.00 \times$ Inverter rated current
AE-02	Electronic gear ratio numerator	1 to 10000	1		(Forward side)		
AE-03	Electronic gear ratio	1 to 10000	1		(Forward side)	0.00 to 590.00 (Hz)	0.00
			1	AF138	Brake Wait Time for Release, 1st-motor (Reverse side)	0.00 to 5.00(s)	0.00
AE-04	Positioning complete range setting	0 to 10000(Pulse)	5	AF139	Brake Wait Time for Accel. ,		
AE-05	Positioning complete delay time setting	0.00 to 10.00(s)	0.00		1st-motor (Reverse side)		
AE-06	Position feed-forward gain setting	0 to 655.35	0.00	AF141	Brake Wait Time for Confirmation, 1st-motor (Reverse side)		
AE-07	Position loop gain setting	0.00 to 100.00	0.50				
AE-08	Position bias setting	-2048 to 2048(Pulse)	0				
AE-10	Stop position selection of Home search function	$\begin{aligned} & 00 \text { (Setting by parameter) /01 (Option-1) /02 (Option-2) } \\ & / 03 \text { (Option-3) } \end{aligned}$	00	AF142	Brake Release Frequency Setting, 1st-motor (Reverse side)	0.00 to 590.00 (Hz)	0.00
AE-11	Stop position of Home search function	0 to 4095	0	AF143	Brake Release Current Setting, 1st-motor (Reverse side)	INV rated current $\times(0.00$ to 2.00)	$1.00 \times$ Inverter rated current
AE-12	Speed reference of Home search function	0.00 to 120.00 (Hz)	0.00				
AE-13	Direction of Home search	00 (forward) /01 (reverse)	00	AF144	Braking Frequency, 1st-motor (Reverse side)	0.00 to 590.00 (Hz)	0.00
AE-20		When [AA121] $\ddagger 10$ or [AA123] $\ddagger 03$		AF150	Brake open delay time, 1st-motor	0.00 to 2.00 (s)	0.20
$\begin{gathered} \text { to } \\ \text { AE-50 } \end{gathered}$	[15] setting	When [AA121]=10 and [AA123]=03 -1073741823 to +1073741823 (pls)	0	AF151	Brake close delay time, 1st-motor		
AE-52	Position control range setting(forward)	$\begin{aligned} & \text { When }[\text { [AA121 }] \neq 10 \text { or }[\text { AA123 }] \neq 03 \\ & 0 \text { to }+268435455 \text { (pls)/ } \\ & \text { When }[\text { [AA121 }]=10 \text { and }[\text { [AA123 }]=03 \\ & 0 \text { to }+1073741823 \text { (pls) } \end{aligned}$	268435455	AF152	Brake answer back check time, 1st-motor	0.00 to 5.00 (s)	0.10
				AF153	Servo lock/ DC injection time at start, 1st-motor	0.00 to 10.00(s)	0.60
AE-54	Position control range setting(reverse)	```When [AA121]#10 or [AA123]*03 -268435455 to 0 (pls)/ When [AA121]=10 and [AA123]=03 -1073741823 to 0 (pls)```	-268435455	AF154	Servo lock/ DC injection time at stop, 1st-motor		
				AF201	DC braking selection, 2nd-motor	same to AF101	00
AE-56	Position control mode selection	00 (Enabling Position control range) 101 (Disabling Position control range)	00	AF202	Braking type selection, 2nd-motor	same to AF102	00
AE-60	Teach-in function target selection	00 to 15(X00 to X15)	00	AF203	DC braking frequency, 2nd-motor	same to AF103	0.50
AE-61	Current position saving at power-off	00(disabled)/01(enabled)	00	AF204	DC braking delay time, 2nd-motor	same to AF104	0.00
AE-62	Preset position data	$\begin{aligned} & \text { when }[\text { AA123 }] \neq 03,-268435455 \text { to }+268435455 \text { (pulse) } \\ & \text { when }[\text { AA123 }]=03,-1073741823 \text { to }+1073741823 \text { (pulse) } \end{aligned}$	0	AF205	DC braking force setting, 2nd-motor	same to AF105	30
AE-64	Deceleration stop distance calculation Gain	50.00 to 200.00(\%)	100.00	AF206	DC braking active time at stop, 2nd-motor	same to AF106	0.00
AE-65	Deceleration stop distance calculation Bias	0.00 to $655.35(\%)$	0.00	AF207	DC braking operation method selection, 2nd-motor	same to AF107	01
AE-66	Speed Limit in APR control	0.00 to 100.00(\%)	1.00				
AE-67	APR start speed	0.00 to 100.00(\%)	0.20	AF208	DC braking force at start, 2nd-motor	same to AF108	30
AE-70	Homing function selection	00 (Low speed homing) /01 (High speed homing 1) 101 (High speed homing 2)	00	AF209	DC braking active time at start, 2nd-motor	same to AF109	0.00
AE-71	Direction of Homing function	00(Foward)/01(Reverse)	00	AF220	ContactorControl Enable, 2nd-motor	same to AF120	00
AE-72	Low-speed of homing function	0.00 to 10.00 (Hz)	0.00	AF221	Run delay time, 2nd-motor	same to AF121	0.20
AE-73	High-Speed of homing function	0.00 to 590.00 (Hz)		AF222	Contactor off delay time, 2nd-motor	same to AF122	0.10
AF101	DC braking selection, 1st-motor	00 (Disable) /01 (Enable) /02 (Enable (Activate only by a speed reference))	00	AF223	Contactor answer back check time, 2nd-motor	same to AF123	0.10
AF102	Braking type selection, 1st-motor	00 (DC braking) /01 (Speed servo lock) /02 (Position servo lock)	00	AF230	Brake Control Enable, 2nd-motor	same to AF130	00
AF103	DC braking frequency, 1st-motor	0.00 to 590.00(Hz)	0.50	AF231	Brake Wait Time for Release, 2nd-motor (Forward side)	same to AF131	0.00
AF104	DC braking delay time, 1st-motor	0.00 to 5.00 (s)	0.00				
AF105	DC braking force setting, 1st-motor	0 to 100(\%)	30	AF232	Brake Wait Time for Accel. , 2nd-motor (Forward side)	same to AF132	
AF106	DC braking active time at stop, 1st-motor	0.00 to 60.00(s)	0.00	AF233	Brake Wait Time for Stopping, 2nd-motor (Forward side)	same to AF133	
AF107	DC braking operation method selection, 1st-motor	00(Edge)/01(Level)	01	AF234	Brake Wait Time for Confirmation, 2nd-motor (Forward side)	same to AF134	
AF108	DC braking force at start, 1st-motor	0 to 100(\%)	30				
AF109	DC braking active time at start, 1st-motor	0.00 to 60.00(s)	0.00	AF235	Brake Release Frequency Setting, 2nd-motor (Forward side)	same to AF135	0.00
AF120	Contactor Control Enable, 1st-motor	$\begin{aligned} & 00 \text { (Disable) /01 (Enable(Power side)) } \\ & 102 \text { (Enable(Motor side)) } \end{aligned}$	00	AF236	Brake Release Current Setting, 2nd-motor (Forward side)	same to AF136	$1.00 \times$ Inverter rated current
AF121	Run delay time, 1st-motor	0.00 to 2.00(s)	0.20				
AF122	Contactor off delay time, 1st-motor		0.10	AF237	Braking Frequency, 2nd-motor (Forward side)	same to AF137	0.00
AF123	Contactor answer back check time, 1st-motor	0.00 to 5.00 (s)	0.10	AF238	Brake Wait Time for Release, 2nd-motor	same to AF138	0.00
AF130	Brake Control Enable, 1st-motor	00 (Disable) /01 (Brake control 1 enable) /02 (Brake control 1 enable (FWD/REV separate setting)) 103 (Brake control 2 enable)	00	AF239	(Reverse side) Brake Wait Time for Accel. 2nd-motor (Reverse side)	same to AF139	
AF131	Brake Wait Time for Release, 1st-motor (Forward side)	0.00 to 5.00 (s)	0.00	AF240	Brake Wait Time for Stopping, 2nd-motor (Reverse side)	same to AF140	
AF132	Brake Wait Time for Accel. , 1st-motor (Forward side)			AF241	Brake Wait Time for Confirmation, 2nd-motor (Reverse side)	same to AF141	
	Brake Wait Time for						
AF133	Stopping, 1st-motor (Forward side)			AF242	Brake Release Frequency Setting, 2nd-motor (Reverse side)	same to AF142	0.00
	Brake Wait Time for						
AF134	Confirmation, 1st-motor (Forward side)			AF243	Brake Release Current Setting, 2nd-motor (Reverse side)	same to AF143	$1.00 \times$ Inverter rated current
AF135	Brake Release Frequency Setting, 1st-motor (Forward side)	0.00 to 590.00 (Hz)	0.00	AF244	Braking Frequency, 2nd-motor (Reverse side)	same to AF144	0.00

Code No.	Parameter Meaning	Selectable User Setting	Initial value	Code No.	Parameter Meaning	Selectable User Setting	Initial value
AF250	Brake open delay time, 2nd-motor	same to AF150	0.20	AH-51	Input source selection of Process data 1 for PID1	00 (Disable) /01 (Setting by Terminal [Ai1]) /02 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) /04 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) 09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option))	01
AF251	Brake close delay time, 2nd-motor	same to AF151		AH-52	Input source selection of Process data 2 for PID1		00
AF252	Brake answer back check time, 2nd-motor	same to AF152	0.10	AH-53	Input source selection of Process data 3 for PID1		00
AF253	Servo lock/ DC injection time at start, 2nd-motor	same to AF153	0.60	AH-54	Calculation symbol selection of Process data for PID1	$\begin{aligned} & 01 \text { (Addition) /02 (Subtraction) /03 (Multiplication) /04 (Division) } \\ & 105 \text { (Square root of FB1) /06 (Square root of FB2) } \\ & 107 \text { (Square root of (FB1-FB2)) /08 (Average of PV-1 to PV-3) } \\ & 109 \text { (Minimum data of PV-1 to PV-3) } \\ & / 10 \text { (Maximum data of PV-1 to PV-3) } \end{aligned}$	01
AF254	Servo lock/ DC injection time at stop, 2nd-motor	same to AF154					
AG101	Jump frequency 1 , 1st-motor	0.00 to $590.00(\mathrm{~Hz})$	0.00				
AG102	Jump frequency width 1 ,	0.00 to 10.00 (Hz)		AH-60	PID1 gain change method selection	00 (Using gain-1 only) $/ 01$ (Changed by Terminal[PRO])	00
				AH-61	PID1 proportional gain 1	0.0 to 100.0	1.0
AG103	Jump frequency 2, 1st-motor	0.00 to 590.00 (Hz)		AH-62	PID1 integral time constant 1	0.0 to 3600.0(s)	1.0
AG104	Jump frequency width 2, 1st-motor	0.00 to 10.00 (Hz)		AH-63	PID1 derivative gain 1	0.00 to 100.00(s)	0.00
				AH-64	PID1 proportional gain 2	0.0 to 100.0	0.0
AG105	1st-motor	0.00 to 590.00 (Hz)		AH-65	PID1 integral time constant 2	0.0 to 3600.0(s)	0.0
AG106	Jump frequency width 3 , 1st-motor	0.00 to $10.00(\mathrm{~Hz})$		AH-66	PID1 derivative gain 2	0.00 to 100.00(s)	0.00
	Acceleration stop frequency			AH-67AH-70	PID feed-forward selection	0 to 10000 (ms)	100
AG110	setting, sts-motor	0.00 to 590.00(Hz)				```00 (Disable) /01 (Setting by Terminal [Ai1]) /02 (Setting by Terminal [Ai2])/03 (Setting by Terminal [Ai3]) /04 (Setting by Terminal [Ai4])/05 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6])```	00
AG111	Acceleration stop time setting, 1st-motor	0.00 to 60.00(s)	0.0				
AG112	Deceleration stop frequency setting, 1st-motor	0.00 to 590.00(Hz)	0.00	AH-71	PID1 output variable	0.00 to 100.00(\%)	0.00
	Acceleration stop time setting, 1st-motor	0.00 to 60.00(s)	0.0	AH-72	PID1 Deviation over level		3.00
AG113				AH-73	PID1 Feedback compare signal turn-off level		100.00
AG-20	Jogging frequency	0.00 to 10.00 (Hz)	6.00	AH-74	PID1 Feedback compare signal turn-on level	0.00 to 100.00(\%)	0.00
AG-21	Jogging stop mode selection	00 (Free run at Jogging stop (Disable at run) /01 (Deceleration stop at Jogging stop (Disable at run) /02 (Dynamic brake at Jogging stop (Disable at run)) /03 (Free run at Jogging stop (Enable at run)) /04 (Deceleration stop at Jogging stop (Enable at run)) /05 (Dynamic brake at Jogging stop (Enable at run))	00				
				AH-75	PID soft start function enable	00 (Disable) 01 (Enable)	00
				AH-76	PID soft start target level	0.00 to 100.00(\%)	100.00
				AH-78	Acceleration time setting for PID soft start function	0.00 to 3600.00(s)	30.00
AG201	Jump frequency 1 , 2nd-motor	same to AG101	0.00	AH-80	PID soft start time	0.00 to 100.00(s)	0.00
AG202	Jump frequency width 1 , 2nd-motor	same to AG102		AH-81	PID soft start error detection enable	00 (Disable) /01 (Enable(Error output))	00
AG203	Jump frequency 2, 2nd-motor	same to AG103		AH-82	PID soft start error detection level	0.00 to 100.00(s)	0.00
AG204	Jump frequency width 2, 2nd-motor	same to AG104		AH-85	PID sleep trigger selection	00 (Disable) /01 (Low output) /02 (Terminal [SLEP] input)	00
				AH-86	PID sleep start level	0.00 to 590.00(Hz)	0.00
AG205	Jump frequency 3 , 2nd-motor	same to AG105		AH-87	PID sleep active time	0.0 to 100.0(s)	0.00
AG206	Jump frequency width 3 , 2nd-motor	same to AG106		AH-88	Setpoint boost before PID sleep enable	00 (Disable) 010 (Enable)	00
		same to AG110		H-8	Setpoint boost time	0.00 to 100.00(s)	0.00
AG210	Acceleration stop riequency setting, 2nd-motor			AH-90	Setpoint boost value		0.00
AG211	Acceleration stop time setting, 2nd-motor	same to AG111	0.0	AH-91	Minimum RUN time befor PID sleep	0.00 to 100.00(s)	0.00
AG212	Deceleration stop frequency setting, 2nd-motor	same to AG112	0.00	AH-92	Minimum active time of PID sleep		
	Acceleration stop time	same to AG113	0.0	AH-93	PID sleep trigger selection	01 (Deviation value) /02 (Low feedback) /03 (Terminal [WAKE] input)	01
AG213	setting, 2nd-motor			AH-94	PID wake start level	0.00 to 100.00(\%)	0.00
AH-01	PID1 enable	00 (Disable) /01 (Enable) 102 (Enable (with reverse output))	00	AH-95	PID wake start time	0.00 to 100.00(s)	
AH-02	PID1 deviation inverse	00(Disable)/01(Enable)	00	AH-96	PID wake start deviation value	0.00 to 100.00(\%)	
AH-03	Unit selection for PID1	refer to the table for unit	01				
AH-04	PID1 scale adjustment	-10000 to 10000	0	AJ-01	PID2 enable	00 (Disable) /01 (Enable) /02 (Enable (with reverse output))	00
AH-04	(at 0\%)			AJ-02	PID2 deviation inverse		00
AH-05	PID1 scale adjustment		10000	AJ-03	PID2 unit selection	refer to the separated list for unit	01
AH-05	(at 100\%)			AJ-04	PID2 scale adjustment(at 0\%)	-10000 to 10000	0
AH-06	PID1 scale adjustment	0 to 4	2	$\begin{aligned} & \text { AJ-05 } \\ & \hline \text { AJ-06 } \end{aligned}$	PID2 scale adiustment(at 100\%)		10000
	(point position)	00 (Not use) /01 (Setting by Terminal [Ai1]) /02 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) 104 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) 106 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option))			PID2 scale adjustment (point position)	0 to 4	07
AH-07 AH-10	Input source selection of Set-point for PID1 Set-point-1 setting for		07	AJ-07	Input source selection of Set-point for PID2	00 (Disable) /01 (Setting by Terminal [Air]) /02 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) /04 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) 09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) $/ 13$ (Pulse train input(Option)) /15 (PID function)	
	PID1	0.00 to $100.00(\%)$ Display range can be changed with [AH-04], [AH-05], [AH-06]	0.00	AJ-10	Set-point setting for PID2	0.00 to $100.00(\%)$ Display range can be changed with [AJ-04], [AJ-05], [AJ-06]	0.00
$\begin{gathered} \text { AH-12 to } \\ \text { AH-40 } \end{gathered}$	PID1 Multi stage set-point 1 to 15 setting						
AH-42	Input source selection of Set-point 2 for PID1	00 (Not use) /01 (Setting by Terminal [Ai1]) 102 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) 104 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) $/ 06$ (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option))	00	AJ-12	Input source selection of Process data for PID2	00 (Not use) /01 (Setting by Terminal [Ai1]) 102 (Setting by Terminal [Ai2])/03 (Setting by Terminal [Ai3]) 104 (Setting by Terminal [Ai4])/05 (Setting by Terminal [Ai5]) 106 (Setting by Terminal [Ai6]) /07 (Setting by parameter) 108 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option))	02
				AJ-13	PID2 proportional gain	0.0 to 100.0	1.0
AH-44	Set-point 2 setting for PID1	0.00 to 100.00 (\%) Display range can be changed with [AH-04], [AH-05], [AH-06]	0.00	AJ-14	PID2 integral time	0.0 to 3600.0(s)	1.0
AH-46	Input source selection of Set-point 3 for PID1	```00 (Not use)/01 (Setting by Terminal [Ai1]) /02 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) /04 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1)/10 (Option-2) /11 (Option-3)/12 (Pulse train input(internal)) /13 (Pulse train input(Option))```	00	AJ-15	PID2 derivative gain	0.00 to 100.00(s)	0.00
				AJ-16	PID2 output variable	0.00 to 100.00(\%)	0.00
				AJ-17	PID2 Deviation over level		3.00
				AJ-18	PID2 Feedback compare signal turn-off level		100.00
				AJ-19	PID2 Feedback compare signal turn-on level		0.00
AH-48	Set-point 2 setting for PID1	0.00 to $100.00(\%)$ Display range can be changed with [AH-04], [AH-05], [AH-06]	0.00				00
AH-50	Calculation symbol selection of Set-point 1 for PID1	01 (Addition) /02 (Subtraction) /03 (Multiplication) /04 (Division) /05 (Minimum deviation) /06 (Maximum deviation)	01	$\begin{aligned} & \text { AJJ-22 } \\ & \hline \text { AJ-23 } \\ & \hline \text { AJ-24 } \\ & \hline \end{aligned}$	PID3 deviation inverse PID3 unit selection PID3 scale adjustment (at 0\%)	00 (Disable) /01 (Enable)	00
						refer to the separated list for unit	01
		/05 (Minimum deviation) /06 (Maximum deviation)				-10000 to 10000	0

Code No.	Parameter Meaning	Selectable User Setting	Initial value
AJ-25	PID3 scale adjustment (at 100\%)	-10000 to 10000	10000
AJ-26	PID3 scale adjustment (point position)	0 to 4	2
AJ-27	Input source selection of Set-point for PID3	00 (Not use) /01 (Setting by Terminal [Ai1]) 102 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) 104 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) 106 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option))	07
AJ-30	Set-point setting for PID3	0.00 to 100.00(\%) Display range can be changed with [AJ-24], [AJ-25], [AJ-26]	0.00
AJ-32	Input source selection of Process data for PID3	```00 (Not use)/01 (Setting by Terminal [Ai1]) /02 (Setting by Terminal [Ai2])/03 (Setting by Terminal [Ai3]) /04 (Setting by Terminal [Ai4])/05 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485)/09 (Option-1)/10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option))```	01
AJ-33	PID3 proportional gain	0.0 to 100.0	1.0
AJ-34	PID3 integral time constant	0.0 to 3600.0(s)	1.0
AJ-35	PID3 derivative gain	0.00 to 100.00(s)	0.00
AJ-36	PID3 output variable	0.00 to 100.00(\%)	0.00
AJ-37	PID3 Deviation over level		3.00
AJ-38	PID3 Feedback compare signal turn-off level		100.00
AJ-39	PID3 Feedback compare signal turn-on level		0.00
AJ-41	PID4 enable	00 (Disable) /01 (Enable) /02 (Enable (with reverse output))	00
AJ-42	PID4 deviation inverse	00 (Disable) /01 (Enable)	00
AJ-43	PID4 unit selection	refer to the separated list for unit	01
AJ-44	PID4 scale adjustment (at 0\%)	-10000 to 10000	0
AJ-45	PID4 scale adjustment (at 100\%)		10000
AJ-46	PID4 scale adjustment (point position)	0 to 4	2
AJ-47	Input source selection of Set-point for PID4	00 (Not use) /01 (Setting by Terminal [Ai1]) 102 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) 104 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) 106 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option))	07
AJ-50	Set-point setting for PID4	0.00 to 100.00(\%) Display range can be changed with [AJ-44], [AJ-45], [AJ-46]	0.00
AJ-52	Input source selection of Process data for PID4	00 (Not use) /01 (Setting by Terminal [Ai1]) 102 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) 104 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) 106 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option))	01
AJ-53	PID4 proportional gain	0.0 to 100.0	1.0
AJ-54	PID4 integral time constant	0.0 to 3600.0(s)	1.0
AJ-55	PID4 derivative gain	0.00 to 100.00(s)	0.00
AJ-56	PID4 output variable	0.00 to 100.00(\%)	0.00
AJ-57	PID4 Deviation over level		3.00
AJ-58	PID4 Feedback compare signal turn-off level		100.00
AJ-59	PID4 Feedback compare signal turn-on level		0.00

- Parameter mode (B code)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
bA101	Frequency limit selection, 1st-motor	00 (Disable) 01 (Setting by Terminal [Ai1]) 02 (Setting by Terminal [Ai2]) 03 (Setting by Terminal [Ai3]) 04 (Setting by Terminal [Ai4]) 05 (Setting by Terminal [Ai5]) 06 (Setting by Terminal [Ai6]) 07 (Setting by parameter) 08 (Setting by RS485) 09 (Option-1) 10 (Option-2) 11 (Option-3) 12 (Pulse train input(internal)) 13 (Pulse train input(Option))	00
bA102	Upper Frequency limit, 1st-motor	0.00 to $590.00(\mathrm{~Hz})$	0.00
bA103	Lower Frequency limit , 1st-motor	0.00 to 590.00 (Hz)	0.00
bA110	Torque limit selection, 1st-motor	00 (Disable) $/ 01$ (Setting by Terminal [Ai1]) 102 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) 104 (Setting by Terminal [Ai4]) /05 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) /07 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3)	07
bA111	Torque limit parameter mode selection, 1st-motor	00 (Quadrant-specific setting) /01 (Switching by terminal [TRQ])	00
bA112	Torque limit 1 (Forward driving), 1st-motor	0.0 to 500.0(\%)	150.0
bA113	Torque limit 2 (Reverse regenerative), 1st-motor		
bA114	Torque limit 3 (Reverse driving), 1st-motor		
bA115	Torque limit 4 (Forward regenerative), 1st-motor		
bA116	Torque limit LADSTOP selection, 1st-motor	00 (Disable) / 01 (Enable)	00
bA120	Over current suppress enable, 1st-motor	00 (Disable) / 01 (Enable)	01
bA121	Over current suppress Level, 1st-motor	INV rated current \times (0.00 to 2.00)	$1.80 \times$ Inverter rated current (A)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
bA122	Overload restriction 1 mode selection, 1st-motor	00 (Disable) /01 (Enable during accel. and constant speed) /02 (Enable during constant speed) 103 (Enable during accel. and constant speed (Accel. during regeneration))	01
bA123	Overload restriction 1 active level, 1st-motor	INV rated current $\times(0.00$ to 2.00)	$1.50 \times$ Inverter rated current (A)
bA124	Overload restriction 1 active level, 1st-motor	11 (Option-3)	1.00
bA126	Overload restriction 2 mode selection, 1st-motor	00 (Disable) /01 (Enable during accel. and constant speed) /02 (Enable during constant speed) 103 (Enable during accel. and constant speed (Accel. during regeneration))	01
bA127	Overload restriction 2 active level, 1st-motor	INV rated current \times (0.00 to 2.00)	$1.50 \times$ Inverter rated current (A)
bA128	Overload restriction 2 active level, 1st-motor	0.10 to 3600.00(s)	1.00
bA-30	Deceleration-stop at power failure	00 (Disable) /01 (Deceleration stop) 102 (Deceleration-stop at power failure (with resume)) 103 (Deceleration-stop at power failure (without resume)	00
bA-31	Decel.-stop at power failure starting voltage	(200V class) 0.0 to $410.0(\mathrm{Vdc})$	$\begin{aligned} & \text { (200V class) } 220.0 \\ & (400 \mathrm{~V} \text { class) } 440.0 \end{aligned}$
bA-32	Decel-stop at power failure control target level	(400V class) 0.0 to $820.0(\mathrm{Vdc})$	$\begin{aligned} & (200 \mathrm{~V} \text { class) } 360.0 \\ & (400 \mathrm{~V} \text { class) } 720.0 \\ & \hline \end{aligned}$
bA-34	Decel-stop at power failure control target level	0.01 to 3600.00(s)	1.00
bA-36	Decel-stop at power failure freq. width at deceleration start	0.00 to 10.00 (Hz)	0.00
bA-37	Decel-stop at power failure DC-bus voltage constant control P-gain	0.00 to 5.00	0.20
bA-38	Decel-stop at power failure DC-bus voltage constant control I-gain	0.00 to 150.00(s)	1.00
bA140	Over-voltage suppression enable, 1st-motor	00:Disable /01:DC bus constant control (deceleration stop) 102:Enable acceleration 103:Enable acceleration (at constant speed and deceleration)	00
bA141	Over-voltage suppression active level, 1st-motor	(200V class) 330.0 to $400.0(\mathrm{Vdc})$ (400 V class) 660.0 to $800.0(\mathrm{Vdc})$	$\begin{aligned} & (200 \mathrm{~V} \text { class) } 380.0 \\ & (400 \mathrm{~V} \text { class) } 760.0 \end{aligned}$
bA142	Over-voltage suppression active level, 1st-motor	0.00 to 3600.00 (s)	1.00
bA144	DC bus constant control proportional gain, 1st-motor	0.00 to 5.00	0.20
bA145	DC bus constant control integral gain, 1st-motor	0.00 to 150.00(s)	1.00
bA146	Over magnetization function selection, 1st-motor	00 (Disable), 01 (Always enable) 02 (At deceleration only) 03 (Operation at setting level) 04 (Operation at setting level at deceleration only)	02
bA147	Over magnetization output filter time constant, 1st-motor	0.00 to 1.00 (s)	0.30
bA148	Over magnetization voltage gain, 1st-motor	50 to 400(\%)	100
bA149	Over magnetization level setting, 1st-motor	(200V class) 330.0 to 400.0 (Vdc) (400 V class) 660.0 to $800.0(\mathrm{Vdc})$	(200V class) 360.0 (400V class) 720.0
bA-60	Dynamic brake usage rate	0.0 to 10.0x[bA-63]/(minimum resitance)(\%)	10.0
bA-61	Dynamic brake selection	00:Disable 101 (Enable (Disabling at stop)) /02 (Enable (Enabling at stop))	00
bA-62	Dynamic brake active level	(200V class) 330.0 to $400.0(\mathrm{~V})$ (400V class) 660.0 to $800.0(\mathrm{~V}$)	(200V class) 360.0 (400V class) 720.0
bA-63	Dynamic brake resister value	minimum resitance to 600(Ω)	Minimum resistance. (It depends on inverter models.)
bA-70	Cooling FAN control method selection	00 (Usualy active) /01 (Active during driving) /02 (Tempareture matter)	00
bA-71	Cooling fan accumulation running time monitor clearance selection	00 (Disable) 101 (Clear)	00
bA201	Frequency limit selection, 2nd motor	same as bA101	00
bA202	Upper frequency limit, 2nd motor	same as bA102	0.00
bA203	Lower frequency limit, 2nd motor	same as bA103	0.00
bA210	Torque limit selection, 2nd-motor	same as bA110	07
bA211	Torque limit parameter mode selection, 2nd-motor	same as bA111	00
bA212	Torque limit 1 (Forward driving), 2nd-motor	same as bA112	150.0(\%)
bA213	Torque limit 2 (Reverse regenerative), 2nd-motor	same as bA113	
bA214	Torque limit 3 (Reverse driving), 2nd-motor	same as bA114	
bA215	Torque limit 4 (Forward regenerative), 2nd motor	same as bA115	
bA216	Torque limit LADSTOP selection, 2nd-motor	same as bA116	00
bA220	Over current suppress enable, 2nd-motor	same as bA120	01
bA221	Over current suppress Level, 2nd-motor	same as bA121	$1.80 \times$ Inverter rated current (A)
bA222	Overload restriction 1 mode selection, 2nd-motor	same as bA122	01
bA223	Overload restriction 1 active level, 2nd-motor	same as bA123	$1.50 \times$ Inverter rated current (A)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
bA224	Overload restriction 1 active level, 2nd-motor	same as bA124	1.00
bA226	Overload restriction 2 mode selection, 2nd-motor	same as bA126	01
bA227	Overload restriction 2 active level, 2nd-motor	same as bA127	$1.50 \times$ Inverter rated current (A)
bA228	Overload restriction 2 active level, 2nd-motor	same as bA128	1.00
bA240	Over-voltage suppression enable, 2nd-motor	same as bA140	00
bA241	Over-voltage suppression active level, 2nd-motor	same as bA141	$\begin{aligned} & \text { (200V Class) } 380.0 \\ & \text { (} 400 \mathrm{~V} \text { class) } 760.0 \\ & \hline \end{aligned}$
bA242	Over-voltage suppression active level, 2nd-motor	same as bA142	1.00
bA244	DC bus constant control proportional gain, 2nd-motor	same as bA144	0.20
bA245	DC bus constant control integral gain, 2nd-motor	same as bA145	1.00
bA246	Over magnetization function selection, 2nd-motor	same as bA146	02
bA247	Over magnetization output filter time constant, 2nd-motor	same as bA147	0.30
bA248	Over magnetization voltage gain, 2nd-motor	same as bA148	100
bA249	Over magnetization level setting, 2nd-motor	same as bA149	$\begin{aligned} & (200 \mathrm{~V} \text { class) } 360.0 \\ & (400 \mathrm{~V} \text { class) } 720.0 \end{aligned}$
bb101	Carrier frequency setting, 1st-motor	```[Ub-03]=02 : Normal Duty 0.5 to \(16.0(\mathrm{kHz})\) [Ub-03]=01 : Light Duty 0.5 to \(12.0(\mathrm{kHz})\) [Ub-03]=00 : Very Light Duty 0.5 to \(10.0(\mathrm{kHz})\) \(\mathrm{P} 1-01760-\mathrm{H}(\mathrm{P} 1-750 \mathrm{H})\) to \(\mathrm{P} 1-03160-\mathrm{H}(\mathrm{P} 1-1320 \mathrm{H})\) are as follows [Ub-03]=02 : 0.5 to \(10.0(\mathrm{kHz})\) [Ub-03]=00 or \(01: 0.5\) to \(8.0(\mathrm{kHz})\)```	2.0
bb102	Sprinkle carrier pattern selection, 1st-motor	$\begin{aligned} & 00 \text { (Disable) /01 (Enable Pattern-1) } \\ & / 02 \text { (Enable Pattern-2) /03 (Enable Pattern-3) } \end{aligned}$	00
bb103	Automatic-carrier reduction selection, 1st-motor	00 (Disable) /01 (Enable(Current)) /02 (Enable(Temperature))	00
bb-10	Automatic error reset selection	00 (Disable) /01 (Effective by Run command is turn-off) 102 (effective after set time) /03 (Emergency force drive)	00
bb-11	Alarm signal selection at Automatic error reset is active	00 (Output) /01 (No output)	00
bb-12	Automatic error reset wait time	0 to 600(s)	2
bb-13	Automatic error reset number	0 to 10(times)	3
bb-20	The number of retries after instantaneous power failure	Oto 16,255	0
bb-21	The number of retries after under voltage	010 16,255	0
bb-22	The number of retries after over current		0
bb-23	The number of retries after over voltage	Oto	0
bb-24	Selection of restart mode at Instantaneous power failure/ under-voltage trip	00 (Start with OHz) 01 (Start with frequency matching) 02 (Start with Active frequency matching) 03 (Detect speed) 04 (Trip after Deceleration stop)	01
bb-25	Allowable under-voltage power failure time	0.3 to 25.0(s)	1.0
bb-26	Retry wait time before motor restart	0.3 to 100.0(s)	0.3
bb-27	Instantaneous power failure/under-voltage trip alarm enable	00 (Disable) /01 (Enable) 102 (Disable at during stop \& during deceleration stop)	00
bb-28	Selection of restart mode at over-current	00 (Start with 0 Hz) 01 (Start with frequency matching) 02 (Start with Active frequency matching) 03 (Detect speed) 04 (Trip after Deceleration stop)	01
bb-29	Wait time of restart at over-current	0.3 to 100.0(s)	0.3
bb-30	Selection of restart mode at over-voltage	00 (Start with OHz) 01 (Start with frequency matching) 02 (Start with Active frequency matching) 03 (Detect speed) 04 (Trip after Deceleration stop)	01
bb-31	Wait time of restart at over-voltage	0.3 to 100.0(s)	0.3
bb-40	Restart mode after FRS release	00 (Start with 0Hz)/01 (Start with frequency matching)	00
bb-41	Restart mode after RS release	102 (Start with Active frequency matching) 103 (Detect speed)	00
bb-42	Restart frequency threshold	0.00 to 590.00(Hz)	0.00
bb-43	Restart level of Active frequency matching	INV rated currentx(0.20 to 2.00)	$1.00 \times$ Inverter rated current
bb-44	Restart constant(speed) of Active Frequency matching	0.10 to 30.00(s)	0.50
bb-45	Restart constant(Voltage) of Active Frequency matching	.1010 30.0(3)	0.50
bb-46	OC-supress level of Active frequency matching	INV rated currentx(0.20 to 2.00)	$1.00 \times$ Inverter rated current
bb-47	Restart speed selection of Active frequency matching	00 (Output frequency at shut down) /01 (Maximum frequency) /02 (Setting frequency)	00
bb160	Over current detection level, 1st-motor	INV rated current×(0.20 to 2.20)	$2.20 \times$ Inverter ND rated current

Code No.	Parameter Meaning	Selectable User Setting	Initial value
bb-61	Power supply over voltage selection	00 (warning) /01 (error)	00
bb-62	Power supply over voltage level setting	(200V class) 300.0 to $410.0(\mathrm{~V})$ (400V class) 600.0 to $820.0(\mathrm{~V})$	$\begin{aligned} & \text { (200V class) } 390.0 \\ & (400 \mathrm{~V} \text { class) } 780.0 \end{aligned}$
bb-64	Ground fault selection		01
bb-65	Input phase loss enable	00 (Disable) $/ 01$ (Enable)	00
bb-66	Output phase loss enable		00
bb-67	Output phase loss detection sensitivity	1 to 100(\%)	10
bb-70	Thermistor error level	0 to 10000(Ω)	3000
bb-80	Over speed detection level	0.0 to 150.0(\%)	135.0
bb-81	Over speed detection time	0.0 to 5.0(s)	0.5
bb-82	Speed deviation error mode selection	00 (warning) $/ 01$ (error)	00
bb-83	Speed deviation error detection level	0.0 to 100.0(\%)	15.0
bb-84	Speed deviation error detection time	0.0 to 5.0(s)	0.5
bb-85	Position deviation error mode selection	00 (warning) 101 (error)	00
bb-86	Position deviation error detection level	0 to 65535(x100pulse)	4096
bb-87	Position deviation error detection time	0.0 to 5.0(s)	0.5
bb201	Carrier frequency setting, 2nd-motor	same as bb101	2.0
bb202	Sprinkle carrier pattern selection, 2nd-motor	same as bb102	00
bb203	Automatic-carrier reduction selection, 2nd-motor	same as bb103	00
bb260	Over current detection level, 2nd-motor	same as bb160	$2.20 \times$ Inverter rated current
bC110	Electronic thermal level setting, 1st-motor	INV rated currentx(0.20 to 3.00)	$1.00 \times$ Inverter rated current
bC111	Electronic thermal characteristic selection, 1st-motor	00 (Reduced torque characteristic(VT)) 101 (Constant torque characteristic(CT)) /02 (Free setting(FREE))	00(*FF) /01(*FEF, *FUF)
bC112	Electronic thermal Subtraction function enable, 1st-motor	00 (Disable) $/ 01$ (Enable)	01
bC113	Electronic thermal Subtraction time, 1st-motor	1 to 1000(s)	600
bC-14	Electronic thermal counter memory selection at Power-off	00 (Disable) $/ 01$ (Enable)	01
bC120	Free electronic thermal frequency-3, 1st-motor	0.00 to $\mathrm{bC122}(\mathrm{~Hz})$	0.00
bC121	Free electronic thermal current-1, 1st-motor	INV rated currentx(0.20 to 3.00)	0.0
bC122	Free electronic thermal frequency-2, 1st-motor	bC120 to bC124(Hz)	0.00
bC123	Free electronic thermal current-2, 1st-motor	INV rated currentx(0.20 to 3.00)	0.0
bC124	Free electronic thermal frequency-3, 1st-motor	bC122 to 590.00(Hz)	0.00
bC125	Free electronic thermal current-3, 1st-motor	INV rated current×(0.20 to 3.00)	0.0
bC210	Electronic thermal level setting, 2nd-motor	same as bC110	$1.00 \times$ Inverter rated current
bC211	Electronic thermal characteristic selection, 2nd-motor	same as bC111	00 (*FF) 101(*FEF, *FUF)
bC212	Electronic thermal Subtraction function enable, 2nd-motor	same as bC112	01
bC213	Electronic thermal Subtraction time, 2nd-motor	same as bC113	600
bC220	Free electronic thermal frequency-1, 2nd-motor	0.00 to bC222	0.00
bC221	Free electronic thermal current-1, 2nd-motor	same as bC121	0.0
bC222	Free electronic thermal frequency-2, 2nd-motor	bC220 to bC224	0.00
bC223	Free electronic thermal current-2, 2nd-motor	same as bC123	0.0
bC224	Free electronic thermal frequency-3, 2nd-motor	bC222 to 590.00(Hz)	0.00
bC225	Free electronic thermal current-3, 2nd-motor	same as bC125	0.0
bd-01	STO input display selection	00 (Warning(with display)) /01 (Warning(without display)) /02 (Trip)	00
bd-02	STO input change time	0.00 to 60.00(s)	1.00
bd-03	Display selection at STO input change time	00 (Warning(with display)) /01 (Warning(without display))	00
bd-04	Action selection after STO input change time	00 (only condition is hold)/01 (Disable)/02 (TRIP)	00

- Parameter mode (C code)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
CA-01	Input terminal [1] function	refer to "input terminal functions list"	028
CA-02	Input terminal [2] function		015
CA-03	Input terminal [3] function		029
CA-04	Input terminal [4] function		032
CA-05	Input terminal [5] function		031
CA-06	Input terminal [6] function		003
CA-07	Input terminal [7] function		004
CA-08	Input terminal [8] function		002
CA-09	Input terminal [9] function		001
CA-10	Input terminal [A] function		033
CA-11	Input terminal [$[8]$ function		034
$\begin{aligned} & \text { CA-21 to } \\ & \text { CA-31 } \end{aligned}$	Input terminal [1] to $[9],[\mathrm{A}],[\mathrm{B}]$ active state	00 (Normal open)/ 01 (Normal close)	00
$\begin{array}{\|c\|c\|} \hline \text { CA-41 to } \\ \text { CA-51 } \\ \hline \end{array}$	Input terminal [1] to [9],[A],[B] response time	0 to 400(ms)	2
CA-55	Multistage input determination time	0 to 2000(ms)	0
CA-60	FUP/FDN overwrite target selection	00 (Speed Reference)/01 (PID1 Setpoint)	00
CA-61	FUP/FDN data save enable	00 (Not save)01 (Save)	00
CA-62	FUP/FDN UDC selection	00 (0Hz)/ 01 (save data)	00
CA-64	Acceleration time setting for FUP/FDN function	0.00 to 3600.00(s)	30.00
CA-66	Deceleration time setting for FUP/FDN function		
CA-70	Speed command selection when [F-OP] active	01 (Setting by Terminal [Ai1])/02 (Setting by Terminal [Ai2]) /03 (Setting by Terminal [Ai3]) $/ 04$ (Setting by Terminal [Ai4]) 105 (Setting by Terminal [Ai5]) /06 (Setting by Terminal [Ai6]) 107 (Setting by parameter) /08 (Setting by RS485) /09 (Option-1) /10 (Option-2) /11 (Option-3) /12 (Pulse train input(internal)) /13 (Pulse train input(Option)) /14 (Setting by EzSQ) /15 (PID function) /16 (Volume on keypad)	01
CA-71	RUN command source selection at [F-OP] is active	00 (Terminal [FW]/[RV]) /01 (3-wire)/02 (RUN key on keypad) $/ 03$ (Setting by RS485) /04 (Option-1) /05 (Option-2) /06 (Option-3)	00
CA-72	Reset mode selection	00 (Trip release at turn-on) /01 (Trip release at turn-off) 102 (Effective only in trip ON condition) 103 (Effective only in trip OFF condition)	00
CA-81	Encoder constant setting	32 to 65535(Pls)	1024
CA-82	Encoder position selection	00 (Phase-A Lead) /01 (Phase-B Lead)	00
CA-83	Motor gear ratio Numerator	1 to 10000	1
CA-84	Motor gear ratio Denominator	1 to 10000	1
CA-90	Pulse train detection object selection	00 (Disable) /01 (reference) /02 (Speed feedback) /03 (Pulse count)	00
CA-91	Mode selection of pulse train input	00 (90 0° shift pulse train) 101 (Forward/ Reverse pulse train and direction signal) 102 (Forward pulse train and Reverse pulse train)	00
CA-92	Pulse train frequency Scale	0.05 to 32.0 (kHz)	25.00
CA-93	Pulse train frequency Filter time constant	0.01 to 2.00(s)	0.10
CA-94	Pulse train frequency Bias value	-100.0 to 100.0(\%)	0.0
CA-95	Pulse train frequency High Limit	0.0 to 100.0(\%)	100.0
CA-96	Pulse train frequency detection low level		0.0
CA-97	Comparing match output ON-level for Pulse count	0 to 65535	0
CA-98	Comparing match output OFF-level for Pulse count		0
CA-99	Comparing match output Maximum value for Pulse count		65535
$\mathrm{Cb}-01$	Filter time constant of Terminal [Ai1]	1 to $500(\mathrm{~ms})$	16
Cb -03	Start value of Terminal [Ait]	0.00 to 100.00(\%)	0.00
Cb -04	End value of Terminal [Ait]		100.00
Cb-05	Start rate of Terminal [Ai1]	0.0 to [Cb-06](%25)	0.0
$\mathrm{Cb}-06$	End rate of Terminal [Ait]	[Cb-05] to 100.0(\%)	100.0
$\mathrm{Cb}-07$	Start point selection of Terminal [Air]	00 (Start value) 01 (0\%)	01
$\mathrm{Cb}-11$	Filter time constant of Terminal [Aiz]	1 to 500(ms)	16
Cb -13	Start value of Terminal [Aiz]	0.00 to 100.00(\%)	0.00
Cb-14	End value of Terminal [Air]		100.00
Cb-15	Start rate of Terminal [Ai2]	0.0 to [Cb-16](%25)	20.0
Cb -16	End rate of Terminal [Ai2]	[Cb-15] to 100.0(\%)	100.0
Cb-17	Start point selection of Terminal [Ai2]	00 (Start value) $/ 01$ (0\%)	01
$\mathrm{Cb}-21$	Filter time constant of Terminal [Aiz]	1 to 500(ms)	16
$\mathrm{Cb}-22$	Terminal [Ai3] selection	00 (single) /01 (added to Ai1/Ai2 : forward and reverse) 102 (added to Ai1/Ai2 : forward only)	00
Cb-23	Start value of Terminal [Ai3]	-100.00 to 100.00(\%)	-100.00
Cb-24	End value of Terminal [Ai3]		100.00
Cb-25	Start rate of Terminal [Ais]	-100.0 to [Cb-26]	-100.0
$\mathrm{Cb}-26$	End rate of Terminal [Ai3]	[Cb-25] to 100.0	100.0
$\mathrm{Cb}-30$	[Ai1] Voltage/Current zero-bias adjustment	-100.00 to 100.00(\%)	0.00
$\mathrm{Cb}-31$	[Ail] Voltage/Current gain adjustment	0.00 to 200.00(\%)	100.00
$\mathrm{Cb}-32$	[Ai2] Voltage/Current zero-bias adjustment	-100.00 to 100.00(\%)	0.00

Code No.	Parameter Meaning	Selectable User Setting	Initial value
Cb -33	[Ai2] Voltage/Current gain adjustment	0.00 to 200.00(\%)	100.00
Cb -34	[Ai3] Voltage -10V-bias adjustment	-100.00 to 100.00 (\%)	0.00
Cb -35	[Ai3] Voltage gain adjustment	0.00 to 200.00(\%)	100.00
Cb -40	Thermistor type selection	00 (Disable) /01 (PTC) 002 (NTC)	00
Cb -41	Thermistor gain adjustment	0.0 to 1000.0	100.0
Cb -51	Filter time constant of Volume on QOP	1 to 500(ms)	100
$\mathrm{Cb}-53$	Start value of Volume on QOP	0.00 to 100.00(\%)	0.00
Cb -54	End value of Volume on QOP		100.00
$\mathrm{Cb}-55$	Start rate of Volume on QOP	0.0 to [Cb-56]]\%)	0.0
Cb -56	End rate of Volume on QOP	[Cb-55] to 100.0(\%)	100.0
$\mathrm{Cb}-57$	Start point selection of Volume on QOP	00 ([Cb-53]) /01 (0\%)	01
CC-01	Output terminal [11] function	refer to "output terminal functions list"	001
CC-02	Output terminal [12] function		002
CC-03	Output terminal [13] function		003
CC-04	Output terminal [14] function		007
CC-05	Output terminal [15] function		035
CC-06	Relay output terminal [16] function		040
CC-07	Relay output terminal [AL] function		017
$\begin{aligned} & \text { CC-11 } \\ & \text { to } 16 \\ & \hline \end{aligned}$	Output terminal [11] to [16] active state	00 (Normal open)/ 101 (Normal close)	00
CC-17	Relay output terminal [AL] active state		01
CC-20	Output terminal [11] on-delay time	0.00 to 100.00(s)	0.00
CC-21	Output terminal [11] off-delay time		
CC-22	Output terminal [12] on-delay time		
CC-23	Output terminal [12] off-delay time		
CC-24	Output terminal [13] on-delay time		
CC-25	Output terminal [13] off-delay time		
CC-26	Output terminal [14] on-delay time		
CC-27	Output terminal [14] off-delay time		
CC-28	Output terminal [15] on-delay time		
CC-29	Output terminal [15] off-delay time		
CC-30	Output relay [16] on-delay time		
CC-31	Relay output terminal [16] off-delay time		
CC-32	Relay output terminal [AL] on-delay time		
CC-33	Relay output terminal [AL] off-delay time		
CC-40	Logical calculation target 1 selection of LOG1	< output terminal functions list > 062 : LOG1 to 068 : LOG7 cannot be selected	000
CC-41	Logical calculation target 2 selection of LOG1		000
CC-42	Logical calculation symbol selection of LOG1	00 (AND) 101 (OR) /02 (XOR)	00
CC-43	Logical calculation target 1 selection of LOG2	< output terminal functions list > 062 : LOG1 to 068 : LOG7 cannot be selected	000
CC-44	Logical calculation target 2 selection of LOG2		000
CC-45	Logical calculation symbol selection of LOG2	00 (AND) 101 (OR) /02 (XOR)	00
CC-46	Logical calculation target 1 selection of LOG3	< output terminal functions list> 062 : LOG1 to 068 : LOG7 cannot be selected	000
CC-47	Logical calculation target 2 selection of LOG3		000
CC-48	Logical calculation symbol selection of LOG3	00 (AND) 101 (OR)/02 (XOR)	00
CC-49	Logical calculation target 1 selection of LOG4	< output terminal functions list > 062 : LOG1 to 068 : LOG7 cannot be selected	000
CC-50	Logical calculation target 2 selection of LOG4		000
CC-51	Logical calculation symbol selection of LOG4	00 (AND) 101 (OR) /02 (XOR)	00
CC-52	Logical calculation target 1 selection of LOG5	< output terminal functions list> 062 : LOG1 to 068 : LOG7 cannot be selected	000
CC-53	Logical calculation target 2 selection of LOG5		000
CC-54	Logical calculation symbol selection of LOG5	00 (AND) 101 (OR) /02 (XOR)	00
CC-55	Logical calculation target 1 selection of LOG6	< output terminal functions list > 062 : LOG1 to 068 : LOG7 cannot be selected	000

Code No.	Parameter Meaning	Selectable User Setting	Initial value	Code No.	Parameter Meaning	Selectable User Setting	Initial value
CC-56	Logical calculation target 2 selection of LOG6	< output terminal functions list> 062 : LOG1 to 068 : LOG7 cannot be selected	000	CE-45	Window compareter for [Ai2] hysterisis width	0 to 10(\%)	0
CC-57	Logical calculation symbol selection of LOG6	00 (AND) 101 (OR) /02 (XOR)	00	CE-46	Window compareter for [Ai3] higher level	-100 to 100(\%)	100
CC-58	Logical calculation target 1 selection of LOG7	< output terminal functions list > 062 : LOG1 to 068 : LOG7 cannot be selected	000	CE-47	Window compareter for [Ai3] lower level		-100
CC-59	Logical calculation target 2 selection of LOG7		000	CE-48	Window compareter for [Ai3] hysterisis width	0 to 10(\%)	0
CC-60	Logical calculation symbol selection of LOG7	00 (AND) 101 (OR) /02 (XOR)	00	CE-50	Operation level at [Ai1] disconnection	0 to 100(\%)	0
Cd-01	[FM] monitor output wave form selection	00 (PWM output (Duty)) /01 (Frequency output)	00	CE-51	Operation level selection at [Ai1] disconnection	00 (Disable) /01 (Enable(at WC* active) /02 (Enable(at WC* de-active)	00
Cd-02	[FM] monitor output base frequency (at PWM output)	0 to 3600(Hz)	2880	CE-52	Operation level at [Ai2] disconnection	0 to 100\%)	0
Cd-03	[FM] monitor output selection	Monitor code to be selected.	[dA-01]	CE-53	Operation level selection at [Ai2] disconnection	00 (Disable) /01 (Enable(at WC* active) /02 (Enable(at WC* de-active)	00
Cd-04	[Ao1] monitor output selection		[dA-01]	CE-54	Operation level at [Ai3] disconnection	-100 to 100(\%)	0
Cd-05	[Ao2] monitor output selection		[dA-01]	CE-55	Operation level selection at [Ai3] disconnection	00 (Disable) /01 (Enable(at WC* active) /02 (Enable(at WC* de-active)	00
Cd-10	Analog monitor adjust mode enable	00 (Disable) 101 (Enable)	00	CE201	Low current signal output mode selection,	Same as CE101	01
Cd-11	Filter time constant of [FM] monitor	1 to 500(ms)	100		2nd-motor		
Cd-12	[FM] Data type selection	00 (Absolute data) 101 (Signed data)	00	CE202	level 1, 2nd-motor	Same as CE102	$1.00 \times$ Inverter rated current
Cd-13	[FM] monitor bias adjustment	-100.0 to 100.0(\%)	0.0	CE203	Low current detection	Same as CE103	
Cd-14	[FM] monitor gain adjustment	-1000.0 to 1000.0(\%)	100.0				
Cd-15	Output level setting at [FM] monitor adjust mode	-100.0 to 100.0(\%)	100.0	CE205	Over load signal output mode selection, 2nd-motor	Same as CE105	01
Cd-21	Filter time constant of [Ao1] monitor	1 to 500(ms)	100	CE206	Over load detection level 1, 2nd-motor	Same as CE106	$1.00 \times$ Inverter rated current
Cd-22	[A01] Data type selection	00 (Absolute data) 101 (Signed data)	00	CE207	Over load detection level	Same as CE107	
Cd-23	[Ao1] monitor bias adjustment	-100.0 to 100.0(\%)	0.0		2, 2nd-motor		
Cd-24	[Ao1] monitor gain adjustment	-1000.0 to 1000.0(\%)	100.0	CE220	Over torque level (Forward driving), 2nd-motor	Same as CE120	100.0
Cd-25	Output level setting at [Ao1] monitor adjust mode	-100.0 to 100.0(\%)	100.0	CE221	Over torque level (Reverse regenerative),	Same as CE121	
Cd-31	Filter time constant of [Ao2] monitor	1 to 500(ms)	100				
Cd-32	[A02] Data type selection	00 (Absolute data) 0101 (Signed data)	00	CE222	(Reverse driving),	Same as CE122	
Cd-33	[Ao2] monitor bias adjustment	-100.0 to 100.0(\%)	20.0		2nd-motor		
Cd-34	[Ao2] monitor gain adjustment	-1000.0 to 1000.0(\%)	100.0	CE223	(Forward regenerative), 2nd motor	Same as CE123	
Cd-35	Output level setting at [Ao2] monitor adjust mode	-100.0 to 100.0(\%)	100.0	CF-01	RS485 communication baud rate selection	03 (2400bps) /04 (4800bps) /05 (9600bps) /06 (19.2kbps) /07 (38.4 kbps) / 08 (57.6 kbps) /09 (76.8 kbps) /10 (115.2 kbps)	05
CE101	Low current signal output mode selection, 1st motor	00 (During Accel./Decel. and constant speed) 101 (During constant speed only)	01	CF-02	RS485 communication Node allocation	1 to 247	1
CE102	Low current detection level 1, 1st motor	INV rated current \times (0.00 to 2.00)	$1.00 \times$ Inverter rated current	CF-03	RS485 communication parity selection	00 (No parity) /01 (Even parity) /02 (Odd parity)	00
CE103	Low current detection level 2, 1st motor			CF-04	RS485 communication stop-bit selection	01 (1bit) /02 (2bit)	01
CE105	Over load signal output mode selection, 1st motor	00 (During Accel./Decel. and constant speed) /01 (During constant speed only)	01	CF-05	RS485 communication error selection	00 (Error) /01 (Error output after Deceleration stop) /02 (Ignore) /03 (Free run stop) /04 (Decelration stop)	02
CE106	Over load detection level 1, 1st motor	INV rated current \times (0.00 to 2.00)	$1.00 \times$ Inverter rated current	CF-06	RS485 communication timeout setting	0.00 to 100.00(s)	0.00
CE107	Over load detection level 2, 1st motor			CF-07	RS485 communication wait time setting	0 to 1000 (ms)	2
CE-10	Arrival frequency setting during acceleration 1	0.00 to 590.00 (Hz)	0.00	CF-08	RS485 communication mode selection	01 (Modbus-RTU) 102 (Communication between inverters (EzCOM) /03 (Communication between inverters (EzCOM Administrator))	01
CE-11	Arrival frequency setting during deceleration 1			CF-11	RS485 registor data		00
CE-12	Arrival frequency setting				selection		
	during acceleration 2			CF-20	EzCOM Start node No.	01 to 08	01
CE-13	Arrival frequency setting			CF-21	EzCOM End node No.	01 to 08	01
CE-13	during deceleration 2 Over torque level			CF-22	EzCOM Start method selection	00 (Terminal [ECOM]) /01 (Always comm.)	00
CE120	(Forward driving),	0.0 to 500.0(\%)	100.0	CF-23	EzCOM data size	01 to 05	05
	1st motor			CF-24		1 to 247	1
CE121	Over torque level (Reverse regenera			CF-24	address 1	1024	
CE121	(Reverse regenerative) 1st motor			CF-25	EzCOM destination resister 1	0000 to FFFF	0000
122	Over torque level			CF-26	EzCOM source resister 1		
CEI22	(Reverse driving 1st motor			CF-27	EzCOM destination address 2	1 to 247	2
CE123	Over torque level (Forward regenerative), 1st motor			CF-28	EzCOM destination resister 2	0000 to FFFF	0000
		0.00 to 100.00(\%)	80.00	CF-29	EzCOM source resister 2		
CE-30	level (MTR)			CF-30	EzCOM destination address 3	1 to 247	3
CE-31	Electronic thermal warning level (CTL)			CF-31	EzCOM destination resister 3	0000 to FFFF	0000
CE-33	Zero speed detection level	0.00 to 100.00(Hz)	0.50		resister 3		
CE-34	Cooling FAN over-heat warnning level	0 to $200\left({ }^{\circ} \mathrm{C}\right.$)	120	CF-32	EzCOM source resister 3	1 to 247	4
CE-36	Accum.RUN(RNT)/ Accum.Power-on(ONT) time setting	0 to 100000(hour)	0	CF-34	address 4 EzCOM destination resister 4	0000 to FFFF	0000
CE-40	Window compareter for	0 to 100(\%)	100	CF-35	EzCOM source resister 4		
Ce-40	[Air] higher level		0	CF-36	EzCOM destination address 5	1 to 247	5
CE-41	Window compareter for [Ai1] lower level			CF-37	EzCOM destination resister 5	0000 to FFFF	0000
CE-42	Window compareter for [Ai1] hysterisis width	0 to 10(\%)	0				
CE-43	Window compareter for [Ai2] higher level	0 to 100(\%)	100	CF-50	USB communication Node allocation	1 to 247	1
	Window compareter for						

- Parameter mode (H code)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
HA-01	Auto-tuning selection	00 (Disable)/101 (Not rotation) /02 (Rotation)/03 (IVMS)	00
HA-02	RUN command selaction at Auto-tuning	00 (Force "RUN" key) /01 (Setting by AA111/AA211)	00
HA-03	Online auto-tuning selection	00 (Disable) 101 (Enable)	00
HA110	Stabilization constant, 1st-motor	0 to 1000(\%)	100
HA115	Speed response, 1st-motor		100
HA12O	ASR gain switching mode selection, 1st-motor	00 (Switching by Terminal [CAS]) /01 (Switching by parameter)	00
HA121	ASR gain switching time setting, 1st-motor	0 to 10000 (ms)	100
HA122	ASR gain mapping intermidiate speed 1 , 1st-motor	0.00 to $590.00(\mathrm{~Hz})$	0.00
HA123	ASR gain mapping intermidiate speed 2, 1st-motor		
HA124	ASR gain mapping Maximum speed, 1st-motor		
HA125	ASR gain mapping P-gain 1, 1st-motor	0.0 to 1000.0(\%)	100.0
HA126	ASR gain mapping l-gain 1, 1st-motor		
HA127	ASR gain mapping P-gain 1 at P-control, 1st-motor		
HA128	ASR gain mapping P -gain 2, 1st-motor		
HA129	ASR gain mapping l-gain 2, 1st-motor		
HA130	ASR gain mapping P-gain 2 at P-control, 1st-motor		
HA131	ASR gain mapping P-gain 3, 1st-motor		
HA132	ASR gain mapping l-gain 3, 1st-motor		
HA133	ASR gain mapping P-gain 4, 1st-motor		
HA134	ASR gain mapping l-gain 4, 1st-motor		
HA210	Stabilization constant, 2nd-motor	same as HA110	100
HA215	Speed response, 2nd-motor	same as HA115	100
HA22O	ASR gain switching mode selection, 2nd-motor	same as HA120	00
HA221	ASR gain switching time setting, 2nd-motor	same as HA121	100
HA222	ASR gain mapping intermidiate speed 1 , 2nd-motor	same as HA122	0.00
HA223	ASR gain mapping intermidiate speed 2 , 2nd-motor	same as HA123	
HA224	ASR gain mapping Maximum speed, 2nd-motor	same as HA124	
HA225	ASR gain mapping P-gain 1, 2nd-motor	same as HA125	100.0
HA226	ASR gain mapping l-gain 1, 2nd-motor	same as HA126	
HA227	ASR gain mapping P-gain 1 at P-control, 2nd-motor	same as HA127	
HA228	ASR gain mapping P -gain 2, 2nd-motor	same as HA128	
HA229	ASR gain mapping l-gain 2, 2nd-motor	same as HA129	
HA23O	ASR gain mapping P-gain 2 at P-control, 2nd-motor	same as HA130	
HA231	ASR gain mapping P -gain 3, 2nd-motor	same as HA131	
HA232	ASR gain mapping l-gain 3, 2nd-motor	same as HA132	
HА2З3	ASR gain mapping P-gain 4, 2nd-motor	same as HA133	
HA234	ASR gain mapping l-gain 4, 2nd-motor	same as HA134	
Hb102	Async.Motor capacity setting, 1st-motor	0.01 to 160.00(kW)	*1)
Hb103	Async.Motor poles setting, 1st-motor	2 to 48(Pole)	4
Hb104	Async.Motor Base frequency setting, 1st-motor	10.00 to 590.00 (Hz)	60.00(*FF, *FUF) /50.00(*FEF)
Hb105	Async.Motor Maximum frequency setting, 1st-motor	10.00 to 590.00 (Hz)	
Hb106	Async.Motor rated voltage, 1st-motor	1 to 1000(V)	(200V class) : 200(*FF) /230(*FEF, *FUF) (400V class) : 400(*FF, *FEF) /460(*FUF)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
Hb108	Async.Motor rated current, 1st-motor	0.01 to 10000.00(A)	${ }^{1)}$
Hb110	Async.Motor constant R1, 1st-motor	0.000001 to 1000.000000(Ω)	
Hb112	Async.Motor constant R2, 1st-motor	0.000001 to 1000.000000(Ω)	
Hb114	Async.Motor constant L, 1st-motor	0.000001 to $1000.000000(\mathrm{mH})$	
Hb116	Async.Motor constant lo, 1st-motor	0.01 to 1000.00(A)	
Hb118	Async.Motor constant J, 1st-motor	0.00001 to $10000.00000\left(\mathrm{kgm}^{2}\right)$	
Hb130	Minimum frequency adjustment, 1st-motor	0.00 to 10.00 (Hz)	0.50
Hb131	Reduced voltage start time setting, 1st-motor	0 to 2000(ms)	36
Hb140	Manual torque boost operational mode selection, 1st-motor	00 (Disabled) /01 (Enabled) /02 (Only forward) /03 (Only reverse)	01
Hb141	Manual torque boost value, 1st-motor	0.0 to 20.0(\%)	0.0
Hb142	Manual torque boost Peak speed, 1st-motor	0.0 to 50.0(\%)	0.0
Hb145	Eco drive enable, 1st-motor	00 (Disable) 101 (Enable)	00
Hb146	Eco drive response adjustment, 1st-motor	0 to 100(\%)	50.0
Hb150	Free-V/f frequency 1 setting, 1st-motor	0.00 to [Hb152](Hz)	0.00
Hb151	Free-V/f Voltage 1 setting, 1st-motor	0.0 to $1000.0(\mathrm{~V})$	0.0
Hb152	Free-V/f frequency 2 setting, 1st-motor	[Hb 150$]$ to [$\mathrm{Hb154]}$] Hz)	0.00
Hb153	Free-V/f Voltage 2 setting, 1st-motor	0.0 to 1000.0(V)	0.0
Hb154	Free-V/f frequency 3 setting, 1st-motor	[Hb152] to [Hb156](Hz)	0.00
Hb155	Free-V/f Voltage 3 setting, 1st-motor	0.0 to $1000.0(\mathrm{~V})$	0.0
Hb156	Free-V/f frequency 4 setting, 1st-motor	[Hb154] to [Hb158](Hz)	0.00
Hb157	Free-V/f Voltage 4 setting, 1st-motor	0.0 to $1000.0(\mathrm{~V})$	0.0
Hb158	Free-V/f frequency 5 setting, 1st-motor	[Hb156] to [Hb160](Hz)	0.00
Hb159	Free-V/f Voltage 5 setting, 1st-motor	0.0 to 1000.0(V)	0.0
Hb160	Free-V/f frequency 6 setting, 1st-motor	[Hb158] to [Hb162](Hz)	0.00
Hb161	Free-V/f Voltage 6 setting, 1st-motor	0.0 to $1000.0(\mathrm{~V})$	0.0
Hb162	Free-V/f frequency 7 setting, 1st-motor	[Hb160] to [Hb105](Hz)	0.00
Hb163	Free-V/f Voltage 7 setting, 1st-motor	0.0 to $1000.0(\mathrm{~V})$	0.0
Hb170	Slip Compensation P-gain witn encoder, 1st-motor	0 to 1000(\%)	100
Hb171	Slip Compensation I-gain witn encoder, 1st-motor	0 to 1000(\%)	100
Hb180	Output voltage gain, 1st-motor	0 to 255(\%)	100
Hb202	Async.Motor capacity setting, 2nd-motor	Same as Hb102	*1)
Hb203	Async.Motor poles setting, 2nd-motor	Same as Hb103	4
Hb204	Async.Motor Base frequency setting, 2nd-motor	Same as Hb104	60.00(*FF, *FUF) /50.00(*FEF)
Hb205	Async.Motor Maximum frequency setting, 2nd-motor	Same as Hb105	
Hb206	Async.Motor rated voltage, 2nd-motor	Same as Hb106	(200V class) : 200(*FF) /230(*FEF, *FUF) (400V class) : 400(*FF, *FEF) /460(*FUF)
Hb208	Async.Motor rated current, 2nd-motor	Same as Hb108	*1)
Hb210	Async.Motor constant R1, 2nd-motor	Same as Hb110	
Hb212	Async.Motor constant R2, 2nd-motor	Same as Hb112	
Hb214	Async.Motor constant L, 2nd-motor	Same as Hb114	
Hb216	Async.Motor constant lo, 2nd-motor	Same as Hb116	
Hb218	Async.Motor constant J, 2nd-motor	Same as Hb118	
Hb230	Minimum frequency ajustment, 2nd-motor	Same as Hb130	0.50
Hb231	Reduced voltage start time setting, 2nd-motor	Same as Hb131	36
Hb240	Manual torque boost operational mode selection, 2nd-motor	Same as Hb140	01
Hb241	Manual torque boost value, 2nd-motor	Same as Hb141	0.0

[^3]| Code No. | Parameter Meaning | Selectable User Setting | Initial value |
| :---: | :---: | :---: | :---: |
| Hb242 | Manual torque boost Peak speed, 2nd-motor | Same as Hb142 | 0.0 |
| Hb245 | Eco drive enable, 2nd-motor | Same as Hb145 | 00 |
| Hb246 | Eco drive response adjustment, 2nd-motor | Same as Hb146 | 50.0 |
| Hb250 | Free-V/f frequency 1 setting, 2nd-motor | Same as Hb150 | 0 |
| Hb251 | Free-V/f Voltage 1 setting, 2nd-motor | Same as Hb151 | 0.0 |
| Hb252 | Free-V/f frequency 2 setting, 2nd-motor | Same as Hb152 | 0.00 |
| Hb253 | Free-V/f Voltage 2 setting, 2nd-motor | Same as Hb153 | 0.0 |
| Hb254 | Free-V/f frequency 3 setting, 2nd-motor | Same as Hb154 | 0.00 |
| Hb255 | Free-V/f Voltage 3 setting, 2nd-motor | Same as Hb155 | 0.0 |
| Hb256 | Free-V/f frequency 4 setting, 2nd-motor | Same as Hb156 | 0.00 |
| Hb257 | Free-V/f Voltage 4 setting, 2nd-motor | Same as Hb157 | 0.0 |
| Hb258 | Free-V/f frequency 5 setting, 2nd-motor | Same as Hb158 | 0.00 |
| Hb259 | Free-V/f Voltage 5 setting, 2nd-motor | Same as Hb159 | 0.0 |
| Hb260 | Free-V/f frequency 6 setting, 2nd-motor | Same as Hb160 | 0.00 |
| Hb261 | Free-V/f Voltage 6 setting, 2nd-motor | Same as Hb161 | 0.0 |
| Hb262 | Free-V/f frequency 7 setting, 2nd-motor | Same as Hb162 | 0.00 |
| Hb263 | Free-V/f Voltage 7 setting, 2nd-motor | Same as Hb163 | 0.0 |
| Hb270 | Slip Compensation P-gain witn encoder, 2nd-motor | Same as Hb170 | 100 |
| Hb271 | Slip Compensation I-gain witn encoder, 2nd-motor | Same as Hb171 | 100 |
| Hb280 | Output voltage gain, 2nd-motor | Same as Hb180 | 100 |
| HC101 | Automatic torque boost voltage compensation gain, 1st-motor | 0 to 255(\%) | 100 |
| HC102 | Automatic torque boost slip compensation gain, 1st-motor | 0 to 255(\%) | 100 |
| HC110 | Zero speed area limit, 1st-motor | 0 to 100(\%) | 80 |
| HC111 | Boost value at start, 1st-motor (IM-SLV,IM-CLV) | 0 to 50\%) | 0 |
| HC112 | Boost value at start, 1st-motor(IM-OHz-SLV) | 0 to 50(\%) | 10 |
| HC113 | Secondary resistance correction, 1st-motor | 00 (Disable) /01 (Enable) | 00 |
| HC114 | Reverse direcion run protection selection, 1st-motor | 00 (Disable) /01 (Enable) | 00 |
| HC120 | Torque current reference filter time constant, 1st-motor | 0 to 100 (ms) | 2 |
| HC121 | Speed feedforward compensation gain, 1st-motor | 0 to 1000(\%) | 0 |
| HC201 | Automatic torque boost voltage compensation gain, 2nd-motor | same as HC101 | 100 |
| HC202 | Automatic torque boost slip compensation gain, 2nd-motor | same as HC102 | 100 |
| HC210 | Zero speed area limit, 2nd-motor | same as HC110 | 80 |
| HC211 | Boost value at start, 2nd-motor(IM-SLV,IM-CLV) | same as HC111 | 0 |
| HC212 | Boost value at start, 2nd-motor(IM-OHz-SLV) | same as HC112 | 10 |
| HC213 | Secondary resistance correction, 2nd-motor | same as HC113 | 00 |
| HC214 | Counter direcion run protection selection, 2nd-motor | same as HC114 | 00 |
| HC220 | Torque current reference filter time constant, 2nd-motor | same as HC120 | 2 |
| HC221 | Speed feedforward compensation gain, 2nd-motor | same as HC121 | 0 |
| Hd102 | Sync.Motor capacity setting, 1st-motor | 0.01 to 160.00(kW) | |
| Hd103 | Sync.Motor Poles setting, 1st-motor | 2 to 48(Pole) | |
| Hd104 | Sync.Base frequency setting, 1st-motor | | |
| Hd105 | Sync.Maximum frequency setting, 1st-motor | 10.00 to 590.00(Hz) | *) |
| Hd106 | Sync.Motor rated voltage, 1st-motor | 1 to 1000(V) | |
| Hd108 | Sync.Motor rated current, 1st-motor | 0.01 to 10000.00(A) | |

Code №.	Parameter Meaning	Selectable User Setting	Initial value
Hd110	Sync.Motor constant R, 1st-motor	0.000001 to 1000.000000 (Ω)	*1)
Hd112	Sync.Motor constant Ld, 1st-motor	0.000001 to $1000.000000(\mathrm{mH})$	
Hd114	Sync.Motor constant Lq, 1st-motor		
Hd116	Sync.Motor constant Ke, 1st-motor	0.1 to $100000.0(\mathrm{mVs} / \mathrm{rad})$	
Hd118	Sync.Motor constant J, 1st-motor	0.00001 to $10000.00000\left(\mathrm{kgm}^{2}\right)$	
Hd130	Minimum Frequency for Sync.M, 1st-motor	0 to 50(\%)	8
Hd131	No-Load current for Sync. M, 1st-motor	0 to 100(\%)	10
Hd132	Starting Method for Sync. M, 1st-motor	00 (Synchronous) /01 (Initial position estimate)	00
Hd133	IMPE OV wait number for Sync.M, 1st-motor	0 to 255	10
Hd134	IMPE detect wait number for Sync.M, 1st-motor		10
Hd135	IMPE detect number for Sync.M, 1st-motor		30
Hd136	IMPE voltage gain for Sync.M, 1st-motor	0 to 200(\%)	100
Hd137	IMPE Mg-pole position offset, 1st-motor	0 to 359(\%)	0
Hd-41	Carrier frequency at IVMS	0.5 to 16.0 (kHz)	2.0
Hd-42	Filter gain of current detection at IVMS	0 to 1000	100
Hd-43	Open phase voltage detection gain	00, 01, 02, 03	00
Hd-44	Open phase switching threshold compensation	00 (Disable) 01 (Enable)	01
Hd-45	P-Gain for speed control, SM(PMM)-IVMS	0 to 1000	100
Hd-46	I-Gain for speed control, SM(PMM)-IVMS	0 to 10000	
Hd-47	Wait time for open phase switching, SM(PMM)-IVMS	0 to 1000	15
Hd-48	Limitation of decision about the drive direction, SM(PMM)-IVMS	00 (Disable) $/ 01$ (Enable)	01
Hd-49	Open phase voltage detection timing adjustment, SM(PMM)-IVMS	0 to 1000	10
Hd-50	Minimum pulse width adjustment, SM(PMM)-IVMS		100
Hd-51	IVMS threshold current limit	0 to 255	100
Hd-52	IVMS threshold gain		
Hd-58	IVMS carrier-frequency switching start/finish point	0 to 50(\%)	5
Hd202	Sync.Motor capacity setting, 2nd-motor	same as Hd102	*1)
Hd203	Sync.Motor poles setting, 2nd-motor	same as Hd103	
Hd204	Sync.Base frequency setting, 2nd-motor	same as Hd104	
Hd205	Sync.Maximum frequency setting, 2nd-motor	same as Hd105	
Hd206	Sync.Motor rated voltage, 2nd-motor	same as Hd106	
Hd208	Sync.Motor rated current, 2nd-motor	same as Hd108	
Hd210	Sync.Motor constant R, 2nd-motor	same as Hd110	
Hd212	Sync.Motor constant Ld, 2nd-motor	same as Hd112	
Hd214	Sync.Motor constant Lq, 2nd-motor	same as Hd114	
Hd216	Sync.Motor constant Ke, 2nd-motor	same as Hd116	
Hd218	Sync.Motor constant J, 2nd-motor	same as Hd118	
Hd230	Minimum Frequency for Sync.M, 2nd-motor	same as Hd130	8
Hd231	No-Load current for Sync. M, 2nd-motor	same as Hd131	10
Hd232	Starting Method for Sync. M, 2nd-motor	same as Hd132	00
Hd233	IMPE OV wait number for Sync.M, 2nd-motor	same as Hd133	10
Hd234	IMPE detect wait number for Sync.M, 2nd-motor	same as Hd134	10
Hd235	IMPE detect number for Sync.M, 2nd-motor	same as Hd135	30
Hd236	IMPE voltage gain for Sync.M, 2nd-motor	same as Hd136	100
Hd237	IMPE Mg-pole position offset, 2nd-motor	same as Hd137	0

*1) Varies depending on inverter models and settings of duty rating.

- Parameter mode (O code)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
oA-10	Operation mode on option card error (SLOT-1)	00 (Error) $/ 01$ (Ignor error (keep running))	00
oA-11	Communication Watch Dog Timer (SLOT-1)	0.00 to 100.00(s)	1.00
0A-12	Action selection at communication error (SLOT-1)	00 (Error) /01 (Trip after Deceleration stop) $/ 02$ (Ignore) /03 (Free run stop) /04 (Deceleration stop)	01
0A-13	Run command selection at start up (SLOT-1)	00 (run command disabled) /01 (run command enabled)	00
0A-20	Operation mode on option card error (SLOT-2)	00 (Error) $/ 01$ (Ignor error (keep running))	00
0A-21	Communication Watch Dog Timer (SLOT-2)	0.00 to 100.00(s)	1.00
0A-22	Action selection at communication error (SLOT-2)	00 (Error) /01 (Trip after Deceleration stop) $/ 02$ (Ignore) /03 (Free run stop) /04 (Deceleration stop)	01
0A-23	Run command selection at start up (SLOT-2)	00 (run command disabled) /01 (run command enabled)	00
OA-30	Operation mode on option card error (SLOT-3)	00 (Error) $/ 01$ (lgnor error (keep running))	00
OA-31	Communication Watch Dog Timer (SLOT-3)	0.00 to 100.00(s)	1.00
OA-32	Action selection at communication error (SLOT-3)	00 (Error) $/ 01$ (Trip after Deceleration stop) /02 (Ignore) /03 (Free run stop) /04 (Deceleration stop)	01
0A-33	Run command selection at start up (SLOT-3)	00 (run command disabled) /01 (run command enabled)	00
ob-01	Encoder constant setting	32 to 65535(Pls)	1024
ob-02	Encoder position selection	00 (Phase-A Lead) /01 (Phase-B Lead)	00
ob-03	Motor gear ratio Numerator	1 to 10000	1
ob-04	Motor gear ratio Denominator	1 to 10000	1
ob-10	Pulse train detection object selection (option)	00 (reference) /01 (Pulse train position reference)	00
ob-11	Mode selection of pulse train input (option)	00 (90° shift pulse train) 101 (Forward/Reverse pulse train and direction signal) 102 (Forward pulse train and Reverse pulse train)	01
ob-12	Pulse train frequency Scale (option)	0.05 to 200.00(kHz)	25.00
ob-13	Pulse train frequency Filter time constant (option)	0.01 to 2.00(s)	0.10
ob-14	Pulse train frequency Bias value (option)	-100.0 to 100.0(\%)	0.0
ob-15	Pulse train frequency High Limit (option)	0.0 to 100.0 (\%)	100.0
ob-16	Pulse train frequency detection low level (option)		0.0
OC-01	Safety opution input display selection	00 (Warning(with display)) 001 (Warning(without display))	00
oc-10	Safety opution input display selection	0.00 to 3600.00(s)	30.00
OC-12	SS1-A deceleration time setting		30.00
OC-14	SLS-A Speed upper limit(Forward)	0.00 to $590.00(\mathrm{~Hz})$	0.00
oC-15	SLS-A Speed upper limit(Reverse)		0.00
oC-16	SLS-A Speed upper limit(Reverse)	0.00 to 3600.00(s)	30.00
oc-18	SDI-A limited direction	00 (limit) /01 (invert)	00
oc-20	SDI-A limited direction	0.00 to 3600.00(s)	30.00
oc-22	SS1-B deceleration time setting		30.00
OC-24	SLS-B Speed upper limit(Forward)	0.00 to $590.00(\mathrm{~Hz})$	0.00
OC-25	SLS-B Speed upper limit(Reverse)		0.00
oC-26	SLS-B Speed upper limit(Reverse)	0.00 to 3600.00(s)	30.00
OC-28	SDI-B limited direction	00 (limit) /01 (invert)	00
OE-01	Filter time constant of Terminal [Ai4]	1 to 500(ms)	16
OE-03	Start value of Terminal [Ai4]	0.00 to 100.00(\%)	0.00
OE-04	End value of Terminal [Ai4]	0.00 to 100.00(\%)	100.00
OE-05	Start rate of Terminal [Ai4]	0.0 to [0E-06] (\%)	0.0
OE-06	End rate of Terminal [Ai4]	[0E-05] to 100.0(\%)	100.0
OE-07	Start point selection of Terminal [Ai4]	00 (Start value[0E-03]) /01 (0\%)	01
oE-11	Filter time constant of Terminal [Ai5]	1 to 500(ms)	16
OE-13	Start value of Terminal [Ai5]	0.00 to 100.00(\%)	0.00
OE-14	End value of Terminal [Ai5]		100.00
OE-15	Start rate of Terminal [Ai5]	0.0 to [0E-16] (\%)	0.0
OE-16	End rate of Terminal [Ai5]	[0E-15] to 100.0(\%)	100.0
0E-17	Start point selection of Terminal [Ai5]	00 (Start value[0E-03]) /01 (0\%)	01
0E-21	Filter time constant of Terminal [Ai6]	1 to $500(\mathrm{~ms})$	16
OE-23	Start value of Terminal [Ai6]	-100.00 to 100.00(\%)	-100.00
OE-24	End value of Terminal [Ai6]		100.00
OE-25	Start rate of Terminal [Ai6]	-100.0 to [0E-26] (\%)	-100.0
0E-26	End rate of Terminal [Ai6]	[0E-25] to 100.0(\%)	00.0

Code No.	Parameter Meaning	Selectable User Setting	Initial value
oE-28	[Ai4] Voltage/Current zero-bias adjustment	-100.00 to 100.00\%)	0.00
oE-29	[Ai4] Voltage/Current gain adjustment	0.00 to 200.00(\%)	100.00
oE-30	[Ai5] Voltage/Current zero-bias adjustment	-100.00 to 100.00(\%)	0.00
oE-31	[Ai5] Voltage/Current gain adjustment	0.00 to 200.00(\%)	100.00
oE-32	[Ai6] Voltage zero-bias adjustment	-100.00 to 100.00(\%)	0.00
OE-33	[Ai6] Voltage gain adjustment	0.00 to 200.00(\%)	100.00
oE-35	Window compareter for [Ai4] higher level	0 to 100(\%)	100
oE-36	Window compareter for [Ai4] lower level		0
oE-37	Window compareter for [Ai4] hysterisis width	0 to 10(\%)	0
OE-38	Window compareter for [Ai5] higher level	0 to 100(\%)	100
oE-39	Window compareter for [Ai5] lower level		0
oE-40	Window compareter for [Ai5] hysterisis width	0 to 10(\%)	0
oE-41	Window compareter for [Ai6] higher level	-100 to 100(\%)	100
oE-42	Window compareter for [Ai6] lower level		-100
OE-43	Window compareter for [Ai6] hysterisis width	0 to 10(\%)	0
oE-44	Operation level at [A14] disconnection	0 to 100(\%)	0
oE-45	Operation level selection at [Ai4] disconnection	00 (Disable) /01 (Enable: At WC ${ }^{\star}$ is active) /02 (Enable: At WC* is not active)	00
oE-46	Operation level at [Ai5] disconnection	0 to 100(\%)	0
OE-47	Operation level selection at [Ai5] disconnection	00 (Disable) /01 (Enable: At WC* is active) /02 (Enable: At WC* is not active)	00
oE-48	Operation level at [Ai6] disconnection	-100 to 100(\%)	0
OE-49	Operation level selection at [Ai6] disconnection	00 (Disable) /01 (Enable: At WC* is active) /02 (Enable: At WC* is not active)	00
oE-50	[Ao3] monitor output selection	Monitor Code to be specified	dA-01
oE-51	[Ao4] monitor output selection		dA-01
oE-52	[Ao5] monitor output selection		dA-01
OE-56	Filter time constant of [Ao3] monitor	1 to 500(ms)	100
OE-57	[A03] Data type selection	00 (Absolute data) 101 (Signed data)	00
OE-58	[Ao3] monitor bias adjustment	-100.0 to 100.0(\%)	0.0
OE-59	[Ao3] monitor gain adjustment	-1000.0 to 1000.0(\%)	100.0
oE-60	Output level setting at [Ao3] monitor adjust mode	-100.0 to 100.0(\%)	100.0
oE-61	Filter time constant of [AO4] monitor	1 to 500(ms)	100
OE-62	[Ao4] Data type selection	00 (Absolute data) 101 (Signed data)	00
oE-63	[Ao4] monitor bias adjustment	-100.0 to 100.0\%)	0.0
oE-64	[Ao4] monitor gain adjustment	-1000.0 to 1000.0(\%)	100.0
oE-65	Output level setting at [Ao4] monitor adjust mode	-100.0 to 100.0(\%)	100.0
oE-66	Filter time constant of [Ao5] monitor	1 to 500(ms)	100
OE-67	[A05] Data type selection	00 (Absolute data) 101 (Signed data)	00
oE-68	[Ao5] monitor bias adjustment	-100.0 to 100.0(\%)	0.0
oE-69	[Ao5] monitor gain adjustment	-1000.0 to 1000.0(\%)	100.0
oE-70	Output level setting at [Ao5] monitor adjust mode	-100.0 to 100.0(\%)	100.0
OH-01	IP-Address selection	00 (Gr.1) /01 (Gr.2)	00
OH-02	Communication speed (port-1)	00 (Auto Negotiation) /01 (100M/Full-duplex) /02 (100M/Haif-duplex) /03 (10M/Full-duplex) /04 (10M/Haif-duplex)	00
OH-03	Communication speed (port-2)		00
oH-04	Ethernet communication timeout	1 to 65535(x10ms)	3000
OH-05	Modbus TCP Port No.(IPv4)	502,1024 to 65535	502
oH-06	Modbus TCP Port No.(IPv6)	502,1024 to 65535	502
OH-20	Profibus Node address	0 to 125	0
oH-21	Profibus clear mode selection	00 (Clear) /01 (Keep last value)	00
OH-22	Protibus Map selection	00 (PPO) /01 (Comvertional) /02 (FlexibleMode)	00
oH-23	Setting enable from Profi master	00 (Enable)/01 (Disable)	00
OH-24	Setpoint telegram/ Actual value telegram Gr . Selection	00 (Gr.A) /01 (Gr.B) /02 (Gr.C)	00
OH-30	IP-Address selection	00 (Gr.1) /01 (Gr.2)	00

Code №.	Parameter Meaning	Selectable User Setting	Initial value
oH-31	Communication speed (port-1)	00 (Auto Negotiation) $/ 01$ (100M/Full-duplex) /02 (100M/Haif-duplex) /03 (10M/Full-duplex) /04 (10M/Haif-duplex)	00
OH-32	Communication speed (port-2)		00
OH-33	Ethernet communication timeout	1 to 65535(*10ms)	3000
OH-34	Setpoint telegram/ Actual value telegram Gr. Selection	00 (Gr.A) /01 (Gr.B) /02 (Gr.C)	00
oJ-01 to oJ-10	Flexible command registration writing register 1 to $10, \mathrm{Gr}$.	0000 to FFFF	0000
$\begin{gathered} \text { OJ-11 to } \\ \text { OJ-20 } \end{gathered}$	Flexible command registration Reading register 1 to 10, Gr.A		
oJ-21 to oJ-30	Flexible command registration writing register 1 to $10, G r . B$		
oJ-31 to oJ-40	Flexible command registration Reading register 1 to 10, Gr.B		
oJ-41 to oJ-50	Flexible command registration writing register 1 to 10, Gr.C		
oJ-51 to oJ-60	Flexible command registration Reading register 1 to 10, Gr.C		
oL-01	IPv4 IP address (1), Gr. 1	0 to 255	192
oL-02	IPv4 IP address (2), Gr. 1		168
oL-03	IPv4 IP address (3), Gr. 1		0
oL-04	IPv4 IP address (4), Gr. 1		2
oL-05	IPv4 Sub-net mask (1), Gr. 1		255
oL-06	IPv4 Sub-net mask (2), Gr. 1		255
oL-07	IPv4 Sub-net mask (3), Gr. 1		255
oL-08	IPv4 Sub-net mask (4), Gr. 1		0
oL-09	IPv4 Default gateway (1), Gr. 1		192
oL-10	IPv4 Default gateway (2), Gr. 1		168
oL-11	IPv4 Default gateway (3), Gr. 1		0
oL-12	IPv4 Default gateway (4), Gr. 1		1
$\begin{aligned} & \text { oL-20 to } \\ & \text { oL-27 } \end{aligned}$	IPv6 IP address (1) to (8), Gr. 1	0000 to FFFF	0000
oL-28	IPv6 Prefix of Sub-net, Gr. 1	0 to 127	64
$\begin{gathered} \text { oL-29 to } \\ \text { oL-36 } \end{gathered}$	IPv6 Default gateway (1) to (8), Gr. 1	0000 to FFFF	0000
oL-40	IPv4 IP address (1), Gr. 2	0 to 255	192
oL-41	IPv4 IP address (2), Gr. 2		168
oL-42	IPv4 IP address (3), Gr. 2		0
oL-43	IPv4 IP address (4), Gr. 2		2
oL-44	IPv4 Sub-net mask (1), Gr. 2		255
oL-45	IPv4 Sub-net mask (2), Gr. 2		255
oL-46	IPv4 Sub-net mask (3), Gr. 2		255
oL-47	IPv4 Sub-net mask (4), Gr. 2		0
oL-48	IPv4 Default gateway (1), Gr. 2		192
oL-49	IPv4 Default gateway (2), Gr. 2		168
oL-50	IPv4 Default gateway (3), Gr. 2		0
oL-51	IPv4 Default gateway (4), Gr. 2		1
$\mathrm{OL}-60 \text { to }$	IPv6 IP address (1) to (8), Gr. 2	0000 to FFFF	0000
oL-68	IPv6 Prefix of Sub-net, Gr. 2	0 to 127	64
$\begin{aligned} & \text { oL-69 to } \\ & \text { oL-76 } \end{aligned}$	IPv6 Default gateway (1) to (8), Gr. 2	0000 to FFFF	0000

- Parameter mode (P code)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
PA-01	Mode selection for Emergency-force drive	00 (Disable) /01 (Enable)	00
PA-02	Frequency reference setting at Emergencyforce drive	0.00 to $590.00(\mathrm{~Hz})$	0.00
PA-03	Direction command at Emergency-force drive	00 (Forward Rotation) /01 (Reverse Rotation)	00
PA-04	Commercial power supply bypass function selection	00 (Disable) /01 (Enable)	00
PA-05	Delay time of Bypass function	0.0 to 1000.0(s)	5.0
PA-20	Simulation mode enable	00 (Disable) /01 (Enable)	00
PA-21	Error code selection for Alarm test	000 to 255	000
PA-22	Output current monitor optional output enable	$\begin{aligned} & 00 \text { (Disable) /01 (Setting by Keypad) } \\ & 102 \text { (Setting by Terminal[Ai1]) /03 (Setting by Terminal[Ai2]) } \\ & 104 \text { (Setting by Terminal[Ai3]) /05 (Setting by Terminal[Ai4]) } \\ & 106 \text { (Setting by Terminal[Ai5]) /07 (Setting by Terminal[Ai6]) } \end{aligned}$	01
PA-23	Output current monitor optional output value setting	INV rated current \times (0.00 to 3.00)	0.0
PA-24	DC-bus voltage monitor optional output enable	00 (Disable) /01 (Setting by Keypad) /02 (Setting by Terminal[Ai1]) /03 (Setting by Terminal[Ai2]) 104 (Setting by Terminal[Ai3]) /05 (Setting by Terminal[Ai4]) /06 (Setting by Terminal[Ai5]) /07 (Setting by Terminal[Ai6])	01
PA-25	DC-bus voltage monitor optional value output	(200V class) 0.0 to 450.0 Vdc (400 V class) 0.0 to 900.0 Vdc	(200V class) 270.0 (400V class) 540.0
PA-26	Output voltage monitor optional output enable	00 (Disable) 01 (Setting by Keypad) /02 (Setting by Terminal[Ai1]) /03 (Setting by Terminal[Ai2]) /04 (Setting by Terminal[Ai3]) /05 (Setting by Terminal[Ai4]) /06 (Setting by Terminal[Ai5]) /07 (Setting by Terminal[Ai6])	01
PA-27	Output voltage monitor optional output value setting	(200 V class) 0.0 to $300.0(\mathrm{~V})$ (400 V class) 0.0 to $600.0(\mathrm{~V}$)	0.0
PA-28	Output torque monitor optional output enable	00 (Disable) $/ 01$ (Setting by Keypad) 102 (Setting by Terminal[Ai1]) /03 (Setting by Terminal[Ai2]) /04 (Setting by Terminal[Ai3]) /05 (Setting by Terminal[Ai4]) 106 (Setting by Terminal[Ai5]) /07 (Setting by Terminal[Ai6])	01
PA-29	Output torque monitor optional output value setting	-500.0 to 500.0(\%)	0.0
PA-30	Start with frequency matching optional Setting enable	00 (Disable) /01 (Setting by Keypad) /02 (Setting by Terminal[Ai1]) /03 (Setting by Terminal[Ai2]) 104 (Setting by Terminal[Ai3]) /05 (Setting by Terminal[Ai4]) /06 (Setting by Terminal[Ai5]) /07 (Setting by Terminal[Ai6])	01
PA-31	Start with frequency matching optional value setting	0.00 to $590.00(\mathrm{~Hz})$	0.00

\square Parameter mode (U code)

Code No.	Parameter Meaning	Selectable User Setting	Initial value
UA-01	Password for Display	0000 to FFFF	0000
UA-02	Password for Softlock		0000
UA-10	Display restriction selection	00 (Full display) /01 (Function-specific display) /02 (User setting display) /03 (Data comparison display) 104 (Monitor only)	00
UA-12	Accumulation input power monitor clear	00 (Disable) /01 (Clear)	00
UA-13	Display gain for Accumulation input power monitor	1 to 1000	1
UA-14	Accumulation output power monitor clear	00 (Disable) 101 (Clear)	00
UA-15	Display gain for Accumulation output power monitor	1 to 1000	1
UA-16	Soft Lock selection	00 (Teminal [SFT]) 01(Always effective)	00
UA-17	Soft Lock target selection	00 (All the data change is impossible) /01 (Data change is impossible except setting Speed)	00
UA-18	Data RN selection	00 (Enabling R/W by operator) 101 (Disabling R/W by operator)	00
UA-19	Low battery warning enable	00 (Disable) 101 (Warnning) 102 (Error)	00
UA-20	Action selection at keypad disconnection	00 (Error) /01 (Error output after Deceleration stop) 102 (Ignore) /03 (Free run stop) /04 (Decelration stop)	02
UA-21	2nd-motor parameter display selection	00 (Hidden) /01 (Display)	01
UA-22	Option parameter display selection		01
UA-30	User parameter auto setting function enable	00 (Disable) /01 (Enable)	00
$\begin{aligned} & U A-31 \text { to } \\ & U A-62 \end{aligned}$	User parameter 1 to 32 selection	no/dA-01 to UF-32 (except UA-31 to UA-62)	no
UA-90	QOP indication off waiting time	0 to 60(min)	0
UA-91	Initial Disply selection	(to be selectro from d, F parameters)	dA-01
UA-92	Auto-return to Initial display enable	00 (Disable) /01 (Enable)	00
UA-93	Setting enable at Monitor display		00
UA-94	Multispeed change on the frequency reference monitor display		00
Ub-01	Initialize Mode selection	00 (Disable) /01 (Error history clear) /02 (Data initialize) /03 (Error history clear \& Data initialize) /04 (Error history clear \& Data initialize \& EzSQ clear) 105 (he parameter related to the terminal is excluded) 106 (The parameter related to the comm. is excluded) 107 (The parameter related to the terminal and comm. is excluded) /08 (EzSQ only) /09 (Trace Data only)	00
Ub-02	Initialize Data selection	00 (MODE0) 101 (MODE1) /02 (MODE2) /03 (MODE3)	00(*FF)/01("FEF) 102(FFUF)
Ub-03	Load type selection	00 (VLD) 101 (LD) 102 (ND)	02
Ub-05	Initialize Enable	00 (Disable) /01 (nitialaize start)	00
UC-01	Debug mode enable	(Please don't change.)	00
Ud-01	Trace function enable	00 (Disable) /01 (Enable)	00
Ud-02	Trace start	00 (Stop) $/ 01$ (Start)	00
Ud-03	Trace data number setting	0 to 8	1
Ud-04	Trace signal number setting		1
$\begin{aligned} & \text { Ud-10 to } \\ & \text { Ud-17 } \end{aligned}$	Trace data 0 to 7 selection	(to be selectro from d, F parameters)	dA-01
Ud-20	Trace signal 0 Input/ Output selection	00 (Input : [Ud-21]) /01 (Output : [Ud-22])	00
Ud-21	Trace signal 0 Input Terminal selection	same as [CA-01]	001
Ud-22	Trace signal 0 Output Terminal selection	same as [CC-01]	001
Ud-23	Trace signal 1 Input/ Output selection	00 (Input : [Ud-24]) /01 (Output : [Ud-25])	00
Ud-24	Trace signal 1 Input Terminal selection	same as [CA-01]	001
Ud-25	Trace signal 1 Output Terminal selection	same as [CC-01]	001
Ud-26	Trace signal 2 Input/ Output selection	00 (Input : [Ud-27]) /01 (Output : [Ud-28])	00
Ud-27	Trace signal 2 Input Terminal selection	same as [CA-01]	001
Ud-28	Trace signal 2 Output Terminal selection	same as [CC-01]	001
Ud-29	Trace signal 3 Input/ Output selection	00 (Input : [Ud-30]) /01 (Output : [Ud-31])	00
Ud-30	Trace signal 3 Input Terminal selection	same as [CA-01]	001
Ud-31	Trace signal 3 Output Terminal selection	same as [CC-01]	001
Ud-32	Trace signal 4 Input/ Output selection	00 (Input : [Ud-33]) /01 (Output : [Ud-34])	00
Ud-33	Trace signal 4 Input Terminal selection	same as [CA-01]	001
Ud-34	Trace signal 4 Output Terminal selection	same as [CC-01]	001
Ud-35	Trace signal 5 Input/ Output selection	00 (Input : [Ud-36]) /01 (Output : [Ud-37])	00
Ud-36	Trace signal 5 Input Terminal selection	same as [CA-01]	001
Ud-37	Trace signal 5 Output Terminal selection	same as [CC-01]	001

Code No.	Parameter Meaning	Selectable User Setting	Initial value
Ud-38	Trace signal 6 Input/ Output selection	00 (Input : [Ud-39]) /01 (Output : [Ud-40])	00
Ud-39	Trace signal 6 Input Terminal selection	same as [CA-01]	001
Ud-40	Trace signal 6 Output Terminal selection	same as [CC-01]	001
Ud-41	Trace signal 7 Input/ Output selection	00 (Input : [Ud-42]) /01 (Output : [Ud-43])	00
Ud-42	Trace signal 7 Input Terminal selection	same as [CA-01]	001
Ud-43	Trace signal 7 Output Terminal selection	same as [CC-01]	001
Ud-50	Trace trigger 1 selection	00 (Trip) /01 (Trace data 0) /02 (Trace data 1) 103 (Trace data 2) 104 (Trace data 3) /05 (Trace data 4) 106 (Trace data 5) /07 (Trace data 6) /08 (Trace data 7) 109 (Trace signal 0) /10 (Trace signal 1) /11 (Trace signal 2) /12 (Trace signal 3) /13 (Trace signal 4) /14 (Trace signal 5) /15 (Trace signal 6) /16 (Trace signal 7)	00
Ud-51	Trigger 1 action selection at trace data trigger	00 (Action at exceeded trigger level) /02 (Action at fall trigger level)	00
Ud-52	Trigger 1 level setting at trace data trigger	0 to 100(\%)	0
Ud-53	Trigger 1 action selection at trace signal trigger	00 (Action by signal on) /01 (Action by signal off)	00
Ud-54	Trace trigger 2 selection	00 (Trip) /01 (Trace data 0) /02 (Trace data 1) /03 (Trace data 2) 104 (Trace data 3) /05 (Trace data 4) 106 (Trace data 5) /07 (Trace data 6) /08 (Trace data 7) 109 (Trace signal 0) /10 (Trace signal 1) /11 (Trace signal 2) /12 (Trace signal 3) /13 (Trace signal 4) /14 (Trace signal 5) /15 (Trace signal 6) /16 (Trace signal 7)	00
Ud-55	Trigger 2 action selection at trace data trigger	00 (Action at exceeded trigger 2 level) /02 (Action at fall trigger 2 level)	00
Ud-56	Trigger 2 level setting at trace data trigger	0 to 100(\%)	0
Ud-57	Trigger 2 action selection at trace signal trigger	00 (Action by signal on)/01 (Action by signal off)	00
Ud-58	Trigger condition selection	00 (At trace trigger 1 formation) 101 (At trace trigger 2 formation) 102 (At OR condition formation of Trigger-1 and Trigger-2) 103 (At AND condition formation of Trigger-1 and Trigger-2)	00
Ud-59	Trigger point setting	0 to 100(\%)	0
Ud-60	Sampling time selection	01 (0.2 ms) /02 (0.5 ms) /03 (1ms) /04 (2ms) /05 (5 ms) /06 (10ms) /07 (50 ms) /08 (100 ms) /09 (500 ms) /10 (1000 ms)	03
UE-01	EzSQ operation cycle	00 (1ms) /01 (2ms : same as SJ700/L700)	00
UE-02	EzSQ function enabl	00 (Disable) /01 (Terminal [PRG])/02 (Always active)	00
$\begin{array}{\|l\|} \hline \text { UE-10 to } \\ \text { UE-7 } \\ \hline \end{array}$	EzSQ User parameter $\mathrm{U}(00)$ to (63)	0 to 65535	0
UF-02 to UF-32	EzSQ User parameter $\mathrm{UL}(00)$ to (15)	-2147483647 to 2147483647	0

Input terminal function list

Function code	Symbol	Function name
0	no	Not use
1	FW	Forward rotation
2	RV	Reverse rotation
3 to 6	CF1 to 4	Multi speed selection 1 to 4
7 to 13	SF1 to 7	Multi speed Bit-1 to 7
14	ADD	Trigger for frequency addition[Ab105]
15	SCHG	Speed reference change
16	STA	3 -wire Start
17	STP	3-wire Stop
18	FR	Forward Over Travel
19	AHD	analog command holding
20	FUP	Remote control Speed-UP function
21	FDN	Remote control Speed-DOWN function
22	UDC	Remote control data clearing
23	F-OP	Force operation
24	SET	2nd-motor control
28	RS	Reset
29	JG	Jogging
30	DB	External Dynamic brake
31	2 CH	2-step Acceleration/Deceleration
32	FRS	Free run stop
33	EXT	External fault
34	USP	unattended start protection
35	CS	Commercial Supply change
36	SFT	Soft-Lock
37	BOK	Answer back from Brake
38	OLR	Overload restriction selection
39	KHC	Accumulation input power clearance
40	OKHC	Accumulation output power clearance
41	PID	Disable PID1
42	PIDC	PID1 integration reset
43	PID2	Disable PID2
44	PIDC2	PID2 integration reset
45	PID3	Disable PID3
46	PIDC3	PID3 integration reset
47	PID4	Disable PID4
48	PIDC4	PID4 integration reset
51 to 54	SVC1 to 4	Multi set-point selection 1 to 4
55	PRO	PID gain change
56	PIO1	PID output switching 1
57	PIO2	PID output switching 2
58	SLEP	SLEEP condition ativation
59	WAKE	WAKE condition ativation
60	TL	Torque limit enable
61	TRQ1	Torque limit selection bit 1
62	TRQ2	Torque limit selection bit 2
63	PPI	P/PI control mode selection
64	CAS	Control gain change
65	SON	Servo-on
66	FOC	Forcing
67	ATR	Permission of torque control
68	TBS	Torque Bias enable
69	ORT	Orientation
71	LAC	Acceleration/Deceleration cancellation
72	PCLR	Position deviation clear
73	STAT	pulse train position command input enable
74	PUP	Position bias (ADD)
75	PDN	Position bias (SUB)
76 to 79	CP1 to 4	Multistage position settings selection 1 to 4
80	ORL	Limit signal of Homing function
81	ORG	Start signal of Homing function
82	FOT	Forward Over Travel
83	ROT	Reserve Over Travel
84	SPD	speed / position switching
85	PSET	Position data presetting
86 to 96	M11 to 11	General-purpose input 1 to 11
97	PCC	Pulse counter clearing
98	ECOM	EzCOM activation
99	PRG	Program RUN
100	HLD	Acceleration/Deceleration disable
101	REN	RUN enable
102	DISP	Display lock
103	PLA	Pulse count A
104	PLB	Pulse count B
105	EmF	Emergency-Force Drive activation
107	COK	Contactor check signal
108	DTR	Data trace start
109	PLZ	Pulse train input Z
110	TCT	Teach-in signal

Intelligent output terminal function list

Function code	Symbol	Function name
0	no	Not use
1	RUN	Running
2	FA1	Constant-speed reached
3	FA2	Set speed overreached
4	FA3	Set frequency reached
5	FA4	Set speed overreached 2
6	FA5	Set speed reached
7	IRDY	inverter ready
8	FWR	Forward rotation
9	RVR	Reverse rotation
10	FREF	Speed referenc $=$ Keypad is selected
11	REF	Run command = Keypad is selected
12	SETM	2nd control is selcted
16	OPO	Option output
17	AL	Alarm
18	MJA	Major failure
19	OTQ	Over-torque
20	IP	Instantaneous power failure
21	UV	Undervoltage
22	TRQ	Torque limited
23	IPS	IP-Non stop function is active
24	RNT	Accumulated operation time over
25	ONT	Accumulated power-on time over
26	THM	Electronic thermal alarm signal(MTR)
27	THC	Electronic thermal alarm signal(CTL)
29	WAC	Capacitor life warning
30	WAF	Cooling-fan speed drop
31	FR	Starting contact signal
32	OHF	Heat sink overheat warning
33	LOC	Low-current indication signal
34	LOC2	Low-current indication signal 2
35	OL	Overload notice advance signal (1)
36	OL2	Overload notice advance signal (2)
37	BRK	Brake release
38	BER	Brake error
39	CON	Contactor control
40	zs	OHz detection signal
41	DSE	Excessive speed deviation
42	PDD	Position deviation over
43	POK	Positioning completed
44	PCMP	Pulse count compare match output
45	OD	Deviation over for PID control
46	FBV	PID1 feedback comparison
47	OD2	OD:Deviation over for PID2 control
48	FBV2	PID2 feedback comparison
49	NDc	Communication line disconnection
50	AirDc	Analog [Ail] disconnection detection
51	AizDc	Analog [Ai2] disconnection detection
52	AisDc	Analog [Ai3] disconnection detection
53	Ai4Dc	Analog [Ai4] disconnection detection
54	Ai5Dc	Analog [Ai5] disconnection detection
55	Ai6Dc	Analog [Aii6] disconnection detection
56 to 61	WCAil to 6	Window comparator Ai1 to 6
62 to 68	LOG1 to 7	Logical operation result 1 to 7
69 to 75	M01 to 7	General-purpose output 1 to 7
76	EMFC	Bypass mode indicator
77	EMBP	Speed deviation over
78	WFT	Trace function waiting for triger
79	TRA	Trace function data logging
80	LBK	Low-battery of keypad
81	OvS	Over-Voltage power Supply
84 to 87	AC0 to 3	Alarm code bit-0 to 3
89	OD3	Deviation over for PID control
90	FBV3	PID3 feedback comparison
91	OD4	Deviation over for PID4 control
92	FBV4	PID4 feedback comparison
93	SSE	PID soft start error

Wiring and Accessories

Input	Motor	Model		Power line cable AWG(mm2)	Grounding	External braking resistor between	line cable Terminal screw size	Crimp terminal		$\begin{gathered} \text { Fuse } \\ (\text { UL rated,Class } \mathrm{J} \text { ot } \mathrm{T}) \end{gathered}$	
Voltage	(kW(HP))			R,S,T,U,V, W,P,PD,N	AWG(mm2)	P and RB AWG(mm2)			Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Voltage(V)	Current(A)
200V	0.4(1/2)	P1-00044-L	ND,LD,VLD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	1.4	600	15
	0.75(1)	P1-00080-L	ND,LD,VLD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	1.4	600	30
	1.5(2)	P1-00104-L	ND,LD,VLD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	1.4	600	40
	2.2(3)	P1-00156-L	ND,LD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	1.4	600	40
			VLD	10(5.3)	10(5.3)	10(5.3)		5.5-4/5.5-4			
	3.7(5)	P1-00228-L	ND,LD,VLD	10(5.3)	10(5.3)	10(5.3)	M4	5.5-4/5.5-4	1.4	600	50
	5.5(7.5)	P1-00330-L	ND,LD,VLD	8(8.4)	8(8.4)	8(8.4)	M5	8-5/8-5	3.0	600	100
	7.5(10)	P1-00460-L	ND,LD	8(8.4)	6(13.3)	8(8.4)	M5	8-5/8-5	3.0	600	150
			VLD	6(13.3)		6(13.3)		14-5/8-5			
	11(15)	P1-00600-L	ND	6(13.3)	6(13.3)	6(13.3)	M6	14-6/14-6	4.0	600	150
			LD,VLD	4(21.2)		4(21.2)		22-6/14-6			
	15(20)	P1-00800-L	ND	4(21.2)	6(13.3)	4(21.2)	M6	22-6/14-6	2.5 to 3.0	600	150
			LD,VLD	3(26.7)		3(26.7)		38-6/14-6			
	18.5(25)	P1-00930-L	ND	3(26.7)	6(13.3)	3(26.7)	M6	38-6/14-6	2.5 to 3.0	600	200
			LD	2(33.6)		2(33.6)		60-6/14-6			
			VLD	1(42.4)		1(42.4)					
	22(30)	P1-01240-L	ND	1(42.4)	6(13.3)	1(42.4)	M8	60-8/14-6	5.5 to 6.6	600	200
			LD	1/0(53.5)		1/0(53.5)					
			VLD	2/0(67.4)		2/0(67.4)		70-8/14-6			
	30(40)	P1-01530-L	ND	2/0(67.4)	4(21.2)	-	M8	70-8/22-8	6.0	600	300
			LD,VLD	1/0x2(53.5x2)				60-8/22-8			
	37(50)	P1-01850-L	ND	4/0(107.2)	4(21.2)	-	M8	100-8/22-6	15.0	600	300
			LD,VLD	1/0x2(53.5x2)				60-8/22-6			
	45(60)	P1-02290-L	ND,LD	1/0×2(53.5x2)	4(21.2)	-	M8	60-8/22-6	6.0 to 10.0	600	400
			VLD	2/0x2(67.4x2)				70-8/22-6			
	55(75)	P1-02950-L	ND	350kc(177)	3(26.7)	-	M10	180-8/38-6	19.6	600	500
			LD,VLD	3/0x2(85.0x2)				80-8/38-6			
400 V	0.75(1)	P1-00041-H	ND,LD,VLD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	1.4	600	15
	1.5(2)	P1-00054-H	ND,LD,VLD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	1.4	600	20
	2.2(3)	P1-00083-H	ND,LD,VLD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	1.4	600	30
	3.7(5)	P1-00126-H	ND,LD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	1.4	600	30
			VLD	12(3.3)	12(3.3)	12(3.3)		5.5-4/5.5-4			
	5.5(7.5)	P1-00175-H	ND,LD	12(3.3)	12(3.3)	12(3.3)	M5	5.5-5/5.5-5	3.0	600	75
			VLD	10(5.3)	10(5.3)	10(5.3)					
	7.5(10)	P1-00250-H	ND,LD	10(5.3)	10(5.3)	10(5.3)	M5	5.5-5/5.5-5	3.0	600	75
			VLD	8(8.4)	8(8.4)	8(8.4)		8-5/8-5			
	11(15)	P1-00310-L	ND,LD,VLD	8(8.4)	8(8.4)	8(8.4)	M6	8-6/8-6	4.0	600	75
	15(20)	P1-00400-H	ND,LD,VLD	8(8.4)	8(8.4)	8(8.4)	M6	8-6/8-6	4.0	600	100
	18.5(25)	P1-00470-H	ND	8(8.4)	8(8.4)	8(8.4)	M6	8-6/8-6	4.0	600	100
			LD,VLD	6(13.3)		6(13.3)		14-6/8-6			
	22(30)	P1-00620-H	ND	6(13.3)	8(8.4)	6(13.3)	M6	14-6/8-6	4.0	600	100
			LD,VLD	4(21.2)		4(21.2)		22-6/8-6			
	30(40)	P1-00770-L	ND	3(26.7)	6(13.3)	-	M8	38-8/14-8	6.0	600	200
			LD	2(33.6)							
			VLD	1(42.4)				60-8/14-8			
	37(50)	P1-00930-H	ND,LD, VLD	1(42.4)	6(13.3)	-	M8	60-8/14-8	15.0	600	200
	45(60)	P1-01160-H	ND	1(42.4)	6(13.3)	-	M8	60-8/14-8	6.0 to 10.0	600	200
			LD,VLD	1/0(53.5)				70-8/14-8			
	55(75)	P1-01800-H	ND	1/0(53.5)	4(21.2)	-	M8	70-8/22-8	6.0 to 10.0	600	250
			LD	2/0(67.4)				60-8/22-8			
			VLD	1/0x2(53.5x2)							
	75	P1-02160-H	ND,LD,VLD	$1 / 0 \times 2(53.5 \times 2)$	4(21.2)	-	M10	60-10	6.0 to 10.0	600	300
	90	P1-02600-H	ND,LD	$1 / 0 \times 2(53.5 \times 2)$	3(26.7)	-	M10	60-10	6.0 to 10.0	600	400
			VLD	2/0×2(67.4×2)				70-10			
	110	P1-03250-H	ND,LD	$2 / 0 \times 2(67.4 \times 2)$	1(42.4)	-	M10	70-10	19.6	600	500
			VLD	$3 / 0 \times 2(85.0 \times 2)$				80-10			
	132	P1-03610-H	ND	$3 / 0 \times 2(85.0 \times 2)$	1(42.4)	-	M10	80-10	19.6	600	500
			LD	4/0×2(107.2×2)				100-10			
			VLD	250kc×2(127×2)				150-10			

Note1: Field wiring connection must be made by a UL and c-UL listed closed-loop terminal connector sized for the wire gauge involved.
Connector must be fixed using the crimping tool specified by the connector manufacture.
Note2: Be sure to use large wire gauges for power wiring if the distance exceeds 20 m (66 ft)
Note3: The wire gauges in the above table shows the designed values based on HIV cables (with thermal resistance of $75^{\circ} \mathrm{C}$).
Note4: Please use the round type crimp terminals (for the UL standard) suitable for the use electric wire when you connect the electric wire with the main circuit termina block. Please put on pressure to the crimp terminals with a crimp tool that the crimp terminal maker recommends.

	Name	Function
1	Input side AC reactor	This is useful in suppressing harmonics induced on the power supply lines, or when the main power voltage imbalance exceeds 3% (and power source capacity is more than 500kVA), or to smooth out line fluctuations. It also improves the power factor.
2	EMI filter	Reduces the conducted noise on the power supply wiring generated by the inverter. Connect to the inverter input side.
3	Radio noise filter	Electrical noise interference may occur on nearby equipment such as a radio receiver. This magnetic choke filter helps reduce radiated noise (can also be used on output).
4	Radio noise filter (Capacitor filter)	This capacitor filter reduces radiated noise from the main power wires in the inverter input side.
5	DC link choke	Suppresses harmonics generated by the inverter.
6	Braking resistor	This is useful for increasing the inverter's control torque for high duty-cycle (on-off) applications, and improving the decelerating
capability.		

Option cassette

Three option cassettes can be installed in SJ-P1. Please extend according to machine and system specifications.

- Encoder feedback option [P1-FB]

P1-FB successfully detects the rotation speed of the motor equipped with an encoder and feedbacks to the inverter. Thus, it contributes to suppressing the speed variation and helps to operate with high accuracy.
In addition, such function can be realized such as position command, synchronous operation and orientation function.
[Application example]
High precision operation of main motor for Winding machine, Wire drawing machine, Transport machine, Extruder and more.

- Field network communication option [P1-ECT, P1-EN, P1-PB]

With the field network option, the inverter can be operated, status monitor, parameter management etc from the host controller.
Since these are cassette type mounted on the front of the inverter, installation, wiring, station number setting and status check

Item		Specification
EtherCAT OPTION EtherсАT.	Communication protocol	EtherCAT CiA402 Drive profile
	Physical layer	100BASE-TX (IEEE802.3)
	Connector	RJ45 (IN / OUT)
	Communication distance	Distance between nodes(between devices) : 100[m]max
	Station address*1	1 to 99 : Set by the address setting switch, 1 to 65535 : Set by configuration (The station address setting depends on the addressing mode used by the EtherCAT master.)
	Distributed clock	Free run mode (asynchronous)
	Process data	PDO free mapping
	Mailbox (CoE)	Emergency messages, SDO requests, SDO responses, Abort SDO
	CiA402 drive profile	Velocity mode
	Applicable cable	100BX-TX support (category 5e or higher) STP(Shield twist pair) cable (Straight or Crossed).
Ethernet (Modbus-TCP) OPTION	Applicable standards	IEEE802.3
	Communication protocol	TCP/IP (Available for IPv4 and IPv6)
	Communication protocol (application layer)	Modbus TCP
	Physical layer	10BASE-T,100BASE-TX (IEEE802.3)
	Connector	RJ45 (PORT1/PORT2)
	Communication distance	Distance between nodes(between devices) : 100[m]max
	Communication method (transmission speed)	Fixed transmission speed : 10Mbps Full/Half-duplex or 100Mbps Full/Half-duplex Auto detection transmission speed : Auto negotiation
	Auto MDI-X	According to selection of communication method (transmission speed). Selecting the auto negotiation: the function Auto MDI-X is enable. Selecting others: the function Auto MDI-X is disable.
	Port number	502 (it can be configured by the inverter parameter setting)
	Maximum number of sessions	4 (Do not connect our PC setup software(ProDriveNext) multiple at the same time)
	External power supply	DC24V $\pm 10 \%$, Current consumption: 1 A to 1.5 A (Current consumption fluctuates with inverter and/or other options operating and so on.)
	Dielectric strength	AC500V (Between insulation circuit)
	Applicable cable	100BX-TX support (category 5e or higher) STP(Shield twist pair) cable (Straight or Crossed).
PROFIBUS OPTION	Communication protocol	PROFIBUS DPVO PROFIBUS DPV1
	Connector, Cable	D-sub 9 pin, PROFIBUS DP cable (EN 50170 part 8-2 as "Cable Type A")
	Node address	0 to 99 : set by rotary switches 1 to 126 : set by parameters (In case of rotary switch setting is in 0)
	Profile	PROFIdrive
Common environment specification	Ambient operating temperature, Ambient operating humidity, Storage temperature	-10 to $50^{\circ} \mathrm{C}, 20$ to $90 \% \mathrm{RH},-20$ to $65^{\circ} \mathrm{C}$ (No icing or condensation conditions.)
	Vibration resistance	$5.9 \mathrm{~m} / \mathrm{s} 2(0.6 \mathrm{G}), 10$ to 55 Hz
	Conformance to EMC and electrical safety standards	IEC/EN61800-3 Second environment, Category C3 IEC/EN61800-5-1 SELV
	Enclosure rating	IP00
	Weight	170 g

-PROFIBUS option cassette

SJ-P1 front surface,
View from right side of the SJ-P1

SJ-P1 Maximum Torque with Short - Time Rating (ND rating)

SJ-P1 Torque Under Continous Operation (ND rating)

Compatibility Between SJ700series and SJ Series P1

Note1: It can be used Ver.2.00 or later inverter.
Note2: This is the dimension from the bottom of the inverter body including the lower mounting bracket to the center of the terminal screw.

For Correct Operation

Application to Motors

Application to general-purpose motors

Operating frequency	For operation at higher than 60 Hz , it is required to examine the allowable torque of the motor, useful life of bearings, noise, vibration, etc. In this case, be sure to consult the motor manufacturer as the maximum allowable rpm differs depending on the motor capacity, etc.
Torque characteristics	The torque characteristics of driving a general-purpose motor with an inverter differ from those of driving it using commercial power (starting torque decreases in particular). Carefully check the load torque characteristic of a connected machine and the driving torque characteristic of the motor.
Motor loss and temperature increase	An inverter-driven general-purpose motor heats up quickly at lower speeds. Consequently, the continuous torque level (output) will decrease at lower motor speeds. Carefully check the torque characteristics vs speed range requirements.
Noise	When run by an inverter, a general-purpose motor audible slightly greater than with commercial power.
Vibration	When run by an inverter at variable speeds, the motor may generate vibration, especially because of (a) unbalance of the rotor including a connected machine, or (b) resonance caused by the natural vibration frequency of a mechanical system. Particularly, be careful of (b) when operating at variable speeds a machine previously fitted with a constant speed motor. Vibration can be minimized by (1) avoiding resonance points using the frequency jump function of the inverter, (2) using a tireshaped coupling, or (3) placing a rubber shock absorber beneath the motor base.
Power transmission	
mechanism	Under continued, low-speed operation, oil lubrication can deteriorate in a power transmission mechanism with an oil-type gear box (gear motor) or reducer. Check with the motor manufacturer for the permissible range of continuous speed. To operate at more than 60Hz, confirm the machine's ability to withstand the centrifugal force generated.

Application to special motors

Gear motor	The allowable rotation range of continuous drive varies depending on the lubrication method or motor manufacturer. (Particularly in case of oil lubrication, pay attention to the low frequency range.)
Brake-equipped motor	For use of a brake-equipped motor, be sure to connect the braking power supply from the primary side of the inverter.
Pole-change motor	There are different kinds of pole-change motors (constant output characteristic type, constant torque characteristic type, etc.), with different rated current values. In motor selection, check the maximum allowable current for each motor of a different pole count. At the time of pole changing, be sure to stop the motor. Also see: Application to the 400V-class motor.
Submersible motor	The rated current of a submersible motor is significantly larger than that of the general-purpose motor. In inverter selection, be sure to check the rated current of the motor.
Explosion-proof motor	Inverter drive is not suitable for a safety-enhanced explosion-proof type motor. The inverter should be used in combination with a pressure-proof explosion-proof type of motor. *Explosion-proof verification is not available for SJ700/SJ700D/SJ700B Series.
Synchronous (MS) motor	In most cases, the synchronous (MS) motor and the high-speed (HFM) motor are designed and manufactured to meet the specifications suitable for a connected machine. As to proper inverter selection, consult the manufacturer.
High-speed (HFM) motor	A single-phase motor is not suitable for variable-speed operation by an inverter drive. Therefore, use a three-phase motor.
Single-phase motor	Voltage is induced at the motor power terminal during motor rotation even if the inverter power supply is cut off. Therefore, please do not touch the terminals of the motor and inverter.PM motor can not be operated with commercial power supply. In addition, PM motor and inverter are ""one to one"" combination.

Application to the 400V-class motor

A system applying a voltage-type PWM inverter with IGBT may have surge voltage at the motor terminals resulting from the cable constants including the cable length and the cable laying method. Depending on the surge current magnification, the motor coil insulation may be degraded. In particular, when a 400 V -class motor is used, a longer cable is used, and critical loss can occur, take any of the following countermeasures:
(1) install the LCR filter between the inverter and the motor,
(2) install the $A C$ reactor between the inverter and the motor, or (3) enhance the insulation of the motor coil.

Notes on Use

Drive

Run/Stop	Run or stop of the inverter must be done with the keys on the operator panel or through the control circuit terminal. Do not operate by installing a electromagnetic contactor (MC) in the main circuit.
Emergency motor stop	When the protective function is operating or the power supply stops, the motor enters the free run stop state. When an emergency stop is required or when the motor should be kept stopped, use of a mechanical brake should be considered.
High-frequency run	A max. 400 Hz can be selected on the SJ Series P1. However, a two-pole motor can attain up to approx. 24,000 rpm, which is extremely dangerous. Therefore, carefully make selection and settings by checking the mechanical strength of the motor and connected machines. Consult the motor manufacturer when it is necessary to drive a standard (general-purpose) motor above 60Hz. A full line of high-speed motors is available from Hitachi.

Repetitive operation on starting or plugging

About frequent repetition use (crane, elevator, press, washing machine), a power semiconductor (IGBT, a rectification diode, thyristor) in the inverter may come to remarkably have a short life by thermal fatigue.
The life can be prolonged by lower a load electric current. Lengthen acceleration / deceleration time. Lower carrier frequency. or increasing capacity of the inverter.

Operation use in highlands beyond 1,000m above sea level

Due to the air density decreasing, whenever standard inverters are used for altitudes above 1000 m , the following conditions are additionally required for proper operation. In application for operation over 2500m, kindly contact your nearest sales office for assistance.

1. Reduction of inverter rated current

Current rating has to be reduced 1% for every 100 m that exceeds from an altitude of 1000 m .
For example, for inverters placed at an altitude of 2000 m , the rated current has to be reduced 10% (Rated current $x 0.9$) from its original amount.
$\left\{(2000 \mathrm{~m}-1000 \mathrm{~m}) / 100 \mathrm{~m}^{*}-1 \%=-10 \%\right\}$
2. Reduction of breakdown voltage

Whenever an inverter is used at altitudes beyond 1000 m , the breakdown voltage decreases as follows:
1000 m or less: $1.00 / 1500 \mathrm{~m}: 0.92 / 2000 \mathrm{~m}: 0.90 / 2500 \mathrm{~m}: 0.85$. As mentioned in the instruction manual, please avoid any pressure test.

Installation location and operating environment

Avoid installation in areas of high temperature, excessive humidity, or where moisture can easily collect, as well as areas that are dusty, subject to corrosive gasses, mist of liquid for grinding, or salt. Install the inverter away from direct sunlight in a well-ventilated room that is free of vibration. The inverter can be operated in the ambient temperature range from SJ700/SJ700D (CT): -10 to $50^{\circ} \mathrm{C}, \mathrm{SJ} 700 \mathrm{D}$ (VT): -10 to $40^{\circ} \mathrm{C}, \mathrm{SJ} 700 \mathrm{~B}:-10$ to $45^{\circ} \mathrm{C}$. (Carrier frequency and output current must be reduced in the range of 40 to $50^{\circ} \mathrm{C}$.)

Main power supply

Installation of an
$A C$ reactor on the input side

In the following examples involving a general-purpose inverter, a large peak current flows on the main power supply side, and is able to destroy the converter module. Where such situations are foreseen or the connected equipment must be highly reliable, install an AC reactor between the power supply and the inverter. Also, where influence of indirect lightning strike is possible, install a lightning conductor.
(A) The unbalance factor of the power supply is 3% or higher. (Note)
(B) The power supply capacity is at least 10 times greater than the inverter capacity (the power supply capacity is 500 kVA or more).
(C) Abrupt power supply changes are expected.

Examples:
(1) Several inverters are interconnected with a short bus.
(2) A thyristor converter and an inverter are interconnected with a short bus.
(3) An installed phase advance capacitor opens and closes.

In cases (A), (B) and (C), it is recommended to install an AC reactor on the main power supply side.
Note: Example calculation with $\mathrm{V}_{\mathrm{RS}}=205 \mathrm{~V}$, $\mathrm{V}_{\mathrm{St}}=201 \mathrm{~V}$, $\mathrm{V}_{\text {тR }}=200 \mathrm{~V}$
$\mathrm{V}_{\text {RS }}$: R-S line voltage, $\mathrm{V}_{\text {St }}$: S-T line voltage, $\mathrm{V}_{\text {тв }}$: T -R line voltage
Unbalance factor of voltage $=\frac{\text { Max. line voltage (min.) }- \text { Mean line voltage }}{\text { Mean line voltage }}$

$$
=\frac{\mathrm{V}_{\mathrm{RS}}-\left(\mathrm{V}_{\mathrm{RS}}+\mathrm{V}_{\mathrm{ST}}+\mathrm{V}_{\text {TR }}\right) / 3}{\left(\mathrm{~V}_{\mathrm{RS}}+\mathrm{V}_{\text {ST }}+\mathrm{V}_{\text {TR }}\right) / 3} \times 100=\frac{205-202}{202} \times 100=1.5(\%)
$$

An inverter run by a private power generator may overheat the generator or suffer from a deformed output voltage waveform of the generator. Generally, the generator capacity should be five times that of the inverter (kVA) in a PWM control system, or six times greater in a PAM control system.

Notes on Peripheral Equipment Selection

Wiring connections		(1) Be sure to connect main power wires with R (L1), S (L2), and T (L3) terminals (input) and motor wires to U (T1), V (T2), and W (T3) terminals (output). (Incorrect connection will cause an immediate failure.) (2) Be sure to provide a grounding connection with the ground terminal (Θ).
	Electromagnetic contactor	When an electromagnetic contactor is installed between the inverter and the motor, do not perform on-off switching during running operation.
Wiring between inverter and motor	Thermal relay	When used with standard applicable output motors (standard three-phase squirrel-cage four-pole motors), the SJ700/SJ700D/ SJ700B Series does not need a thermal relay for motor protection due to the internal electronic protective circuit. A thermal relay, however, should be used: - during continuous running outside a range of 30 to 60 Hz . - for motors exceeding the range of electronic thermal adjustment (rated current). - when several motors are driven by the same inverter; install a thermal relay for each motor. - The RC value of the thermal relay should be more than 1.1 times the rated current of the motor. If the wiring length is 10 m or more, the thermal relay tends to turn off readily. In this case, provide an AC reactor on the output side or use a current sensor.
Installing a circuit breaker		Install a circuit breaker on the main power input side to protect inverter wiring and ensure personal safety. Choose an invertercompatible circuit breaker. The conventional type may malfunction due to harmonics from the inverter. For more information, consult the circuit breaker manufacturer.
Wiring distance		The wiring distance between the inverter and the remote operator panel should be 20 meters or less. Shielded cable should be used on thewiring. Beware of voltage drops on main circuit wires. (A large voltage drop reduces torque.)
Earth leakage relay		If the earth leakage relay (or earth leakage breaker) is used, it should have a sensitivity level of 15 mA or more (per inverter).
Phase advance capacitor		Do not use a capacitor for power factor improvement between the inverter and the motor because the high-frequency components of the inverter output may overheat or damage the capacitor.

High-frequency Noise and Leakage Current

(1) High-frequency components are included in the input/output of the inverter main circuit, and they may cause interference in a transmitter, radio, or sensor if used near the inverter. The interference can be minimized by attaching noise filters (option) in the inverter circuitry.
(2) The switching action of an inverter causes an increase in leakage current. Be sure to ground the inverter and the motor.

Lifetime of Primary Parts

Because a DC bus capacitor deteriorates as it undergoes internal chemical reaction, it should normally be replaced every 10 years. Be aware, however, that its life expectancy is considerably shorter when the inverter is subjected to such adverse factors as high temperatures or heavy loads exceeding the rated current of the inverter. The approximate lifetime of the capacitor is as shown in the figure at the right when it is used 24 hours daily (80% load). JEMA standard is the 5 years at ambient temperature $40^{\circ} \mathrm{C}$ used in 12 hours daily. (According to the " Instructions for Periodic Inspection of General-Purpose Inverter " (JEMA).) Also, such moving parts as a cooling fan should be replaced. Maintenance inspection and parts replacement must beperformed by only specified trained personnel. Please plan to replace new inverter depends on the load, ambient condition in advance.

Precaution for Correct Usage

- Before use, be sure to read through the Instruction Manual to insure proper use of the inverter.
- Note that the inverter requires electrical wiring; a trained specialist should carry out the wiring.
- The inverter in this catalog is designed for general industrial applications. For special applications in fields such as aircraft, outer space, nuclear power, electrical power, transport vehicles, clinics, and underwater equipment, please consult with us in advance.
- For application in a facility where human life is involved or serious injury may occur, make sure to provide safety devices to avoid any accident.
- The inverter is intended for use with a three-phase AC motor. For use with a load other than this, please consult with us.

[^0]: *Can not be read in the case of inverter failure.

[^1]: *Turn off this function for lifting equipment.

[^2]:

 may be limited in the range according to the use of drive. **: The values for the sensorless vector control are assigned according to the values in the ND rating in the Hitachi standard motor table.
 attaching the braking resistor the regenerative braking unit is no longer required.

[^3]: 1) Varies depending on inverter models and settings of duty rating
